scholarly journals Integrated Proteomics and Lipidomics Investigation of the Mechanism Underlying the Neuroprotective Effect of N-benzylhexadecanamide

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2929 ◽  
Author(s):  
Yanyan Zhou ◽  
Hongjie Wang ◽  
Feifei Guo ◽  
Nan Si ◽  
Adelheid Brantner ◽  
...  

Macamides are very important secondary metabolites produced by Lepidium meyenii Walp, which possess multiple bioactivities, especially in the neuronal system. In a previous study, we observed that macamides exhibited excellent effects in the recovery of injured nerves after 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neuronal damage in zebrafish. However, the mechanism underlying this effect remains unclear. In the present study, we observed that N-benzylhexadecanamide (XA), which is a typical constituent of macamides, improved the survival rate of neurons in vitro. We determined the concentration of neurotransmitters in MN9D cells and used it in conjunction with an integrated proteomics and lipidomics approach to investigate the mechanism underlying the neuroprotective effects of XA in an MPP+-induced neurodegeneration cell model using QqQ MS, Q-TOF MS, and Orbitrap MS. The statistical analysis of the results led to the identification of differentially-expressed biomarkers, including 11 proteins and 22 lipids, which may be responsible for the neuron-related activities of XA. All these potential biomarkers were closely related to the pathogenesis of neurodegenerative diseases, and their levels approached those in the normal group after treatment with XA. Furthermore, seven lipids, including five phosphatidylcholines, one lysophosphatidylcholine, and one phosphatidylethanolamine, were verified by a relative quantitative approach. Moreover, four proteins (Scarb2, Csnk2a2, Vti1b, and Bnip2) were validated by ELISA. The neurotransmitters taurine and norepinephrine, and the cholinergic constituents, correlated closely with the neuroprotective effects of XA. Finally, the protein–lipid interaction network was analyzed. Based on our results, the regulation of sphingolipid metabolism and mitochondrial function were determined to be the main mechanisms underlying the neuroprotective effect of XA. The present study should help us to better understand the multiple effects of macamides and their use in neurodegenerative diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Shahazul Islam ◽  
Cristina Quispe ◽  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Ahmed Al-Harrasi ◽  
...  

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shu Ye ◽  
Biao Cai ◽  
Peng Zhou ◽  
Guoquan Wang ◽  
Huawu Gao ◽  
...  

Alzheimer’s disease (AD) is a complex neurodegenerative disease. It is a chronic, lethal disease in which brain function is severely impaired and neuronal damage is irreversible. Huang-Pu-Tong-Qiao (HPTQ), a formula from traditional Chinese medicine, has been used in the clinical treatment of AD for many years, with remarkable effects. However, the neuroprotective mechanisms of HPTQ in AD have not yet been investigated. In the present study, we used AD models in vivo and in vitro, to investigate both the neuroprotective effect of HPTQ water extracts (HPTQ-W) and the potential mechanisms of this action. For the in vivo study, after HPTQ intervention, the Morris water maze test was used to examine learning and memory in rats. Transmission electron microscopy and immunofluorescence methods were then used to investigate neuronal damage. For the in vitro experiments, rat primary hippocampal neurons were cultured and cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Additionally, mRNA levels of CaM, CaMKK, CaMKIV, and tau were examined using qRT-PCR, and protein expression of CaM, CaMKK, p-CaMKIV, and p-tau were examined using western blot. In vivo, we revealed that HPTQ significantly improved learning and memory deficits and attenuated neuronal damage in the AD rat model. Furthermore, in vitro results showed that HPTQ significantly increased cell viability in the AD cell model. We also demonstrated that HPTQ significantly decreased the mRNA levels of CaM, CaMKK, CaMKIV, and tau and significantly decreased the protein expressions of CaM, CaMKK, p-CaMKIV, and p-tau. In conclusion, our results indicated that HPTQ improved cognition and ameliorated neuronal damage in AD models and implicated a reduction in tau phosphorylation caused by inhibition of the CaM-CaMKIV pathway as a possible mechanism.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Somayeh Taymouri ◽  
Abbas Pardakhty ◽  
Majid Asadi-Shekaari ◽  
Abodolreza Babaee

The objective of the present study was to prepare a stableivinjectable formulation of ascorbic acid and α-tocopherol in preventing the cerebral ischemia. Different niosomal formulations were prepared by Span and Tween mixed with cholesterol. The physicochemical characteristics of niosomal formulations were evaluatedin vitro. Forin vivoevaluation, the rats were made ischemic by middle cerebral artery occlusion model for 30 min and the selected formulation was used for determining its neuroprotective effect against cerebral ischemia. Neuronal damage was evaluated by optical microscopy and transmission electron microscopy. The encapsulation efficiency of ascorbic acid was increased to more than 84% by remote loading method. The cholesterol content of the niosomes, the hydrophilicity potential of the encapsulated compounds, and the preparation method of niosomes were the main factors affecting the mean volume diameter of the prepared vesicles. High physical stability of the niosomes prepared from Span 40 and Span 60 was demonstrated due to negligible size change of vesicles during 6 months storage at 4–8°C.In vivostudies showed that ST60/Chol 35 : 35 : 30 niosomes had more neuroprotective effects against cerebral ischemic injuries in male rats than free ascorbic acid.


2016 ◽  
Vol 44 (05) ◽  
pp. 907-925 ◽  
Author(s):  
Thomas Friedemann ◽  
Yue Ying ◽  
Weigang Wang ◽  
Edgar R. Kramer ◽  
Udo Schumacher ◽  
...  

The rhizome of Coptis chinensis is commonly used in traditional Chinese medicine alone or in combination with other herbs to treat diseases characterized by causing oxidative stress including inflammatory diseases, diabetes mellitus and neurodegenerative diseases. In particular, there is emerging evidence that Coptis chinensis is effective in the treatment of neurodegenerative diseases associated with oxidative stress. Hence, the aim of this study was to investigate the neuroprotective effect of Coptis chinensis in vitro and in vivo using MPP[Formula: see text] and MPTP models of Parkinson’s disease. MPP[Formula: see text] treated human SH-SY5Y neuroblastoma cells were used as a cell model of Parkinson’s disease. A 24[Formula: see text]h pre-treatment of the cells with the watery extract of Coptis chinensis significantly increased cell viability, as well as the intracellular ATP concentration and attenuated apoptosis compared to the MPP[Formula: see text] control. Further experiments with the main alkaloids of Coptidis chinensis, berberine, coptisine, jaterorrhizine and palmatine revealed that berberine and coptisine were the main active compounds responsible for the observed neuroprotective effect. However, the full extract of Coptis chinensis was more effective than the tested single alkaloids. In the MPTP-induced animal model of Parkinson’s disease, Coptis chinensis dose-dependently improved motor functions and increased tyrosine hydroxylase-positive neurons in the substantia nigra compared to the MPTP control. Based on the results of this work, Coptis chinensis and its main alkaloids could be considered potential candidates for the development of new treatment options for Parkinson’s disease.


1995 ◽  
Vol 15 (5) ◽  
pp. 865-876 ◽  
Author(s):  
Miguel A. Pérez-Pinzón ◽  
Carolina M. Maier ◽  
Edward J. Yoon ◽  
Guo-Hua Sun ◽  
Rona G. Giffard ◽  
...  

The in vivo neuroprotective effect and brain levels of cis-4-phosphonomethyl-2-piperidine carboxylic acid (CGS 19755), a competitive N-methyl-D-aspartate (NMDA) antagonist, were compared with its in vitro neuroprotective effects. The dose-response for in vitro neuroprotection against both NMDA toxicity and combined oxygen-glucose deprivation (OGD) was determined in murine neocortical cultures. Primary cultures of neocortical cells from fetal mice were injured by exposure to 500 μM NMDA for 10 min or to OGD for 45 min. The effect of CGS 19755 in both injury paradigms was assessed morphologically and quantitated by determination of lactate dehydrogenase release. Near complete neuroprotection was found at high doses of CGS 19755. The ED50 for protection against NMDA toxicity was 25.4 μmM, and against OGD the ED50 was 15.2 μM. For the in vivo paradigm rabbits underwent 2 h of left internal carotid, anterior cerebral, and middle cerebral artery occlusion followed by 4 h reperfusion; ischemic injury was assessed by magnetic resonance imaging and histopathology. The rabbits were treated with 40 mg/kg i.v. CGS 19755 or saline 10 min after arterial occlusion. CSF and brain levels of CGS 19755 were 12 μM and 5 μM, respectively, at 1 h, 6 μM and 5 μM at 2 h, and 13 μM and 7 μM at 4 h. These levels were neuroprotective in this model, reducing cortical ischemic edema by 48% and ischemic neuronal damage by 76%. These results suggest that a single i.v. dose penetrates the blood-brain barrier, attaining sustained neuroprotective levels that are in the range for in vitro neuroprotection.


Author(s):  
Ф.М. Шакова ◽  
Т.И. Калинина ◽  
М.В. Гуляев ◽  
Г.А. Романова

Цель исследования - изучение влияния комбинированной терапии (мутантные молекулы эритропоэтина (EPO) и дипептидный миметик фактора роста нервов ГК-2H) на воспроизведение условного рефлекса пассивного избегания (УРПИ) и объем поражения коры мозга у крыс с двусторонним ишемическим повреждением префронтальной коры. Методика. Мутантные молекулы EPO (MЕРО-TR и MЕPО-Fc) с значительно редуцированной эритропоэтической и выраженной цитопротекторной активностью созданы методом генной инженерии. Используемый миметик фактора роста нервов человека, эндогенного регуляторного белка, в экспериментах in vitro проявлял отчетливые нейропротективные свойства. Двустороннюю фокальную ишемию префронтальной коры головного мозга крыс создавали методом фотохимического тромбоза. Выработку и оценку УРПИ проводили по стандартной методике. Объем повреждения мозга оценивался при помощи МРТ. MEPO-TR и MEPO-Fc (50 мкг/кг) вводили интраназально однократно через 1 ч после фототромбоза, ГК-2Н (1 мг/кг) - внутрибрюшинно через 4 ч после фототромбоза и далее в течение 4 послеоперационных суток. Результаты. Выявлено статистически значимое сохранение выработанного до ишемии УРПИ, а также значимое снижение объема повреждения коры при комплексной терапии. Полученные данные свидетельствуют об антиамнестическом и нейропротекторном эффектах примененной комбинированной терапии, которые наиболее отчетливо выражены в дозах: МEPO-Fc (50 мкг/кг) и ГК-2Н (1 мг/кг). Заключение. Подтвержден нейропротекторный эффект и усиление антиамнестического эффекта при сочетанном применении мутантных производных эритропоэтина - MEPO-TR и MEPO-Fc и дипептидного миметика фактора роста нервов человека ГК-2H. The aim of this study was to investigate the effect of combination therapy, including mutant erythropoietin molecules (EPO) and a dipeptide mimetic of the nerve growth factor, GK-2H, on the conditioned passive avoidance (PA) reflex and the volume of injury induced by bilateral ischemia of the prefrontal cortex in rats. Using the method of genetic engineering the mutant molecules of EPO, MERO-TR and MEPO-Fc, with strongly reduced erythropoietic and pronounced cytoprotective activity were created. The used human nerve growth factor mimetic, an endogenous regulatory protein based on the b-bend of loop 4, which is a dimeric substituted dipeptide of bis- (N-monosuccinyl-glycyl-lysine) hexamethylenediamine, GK-2 human (GK-2H), has proven neuroprotective in in vitro experiments. Methods. Bilateral focal ischemic infarction was modeled in the rat prefrontal cortex by photochemically induced thrombosis. The PA test was performed according to a standard method. Volume of brain injury was estimated using MRI. MEPO-TR, and MEPO-Fc (50 mg/kg, intranasally) were administered once, one hour after the injury. GK-2Н (1 mg/kg, i.p.) was injected four hours after the injury and then for next four days. Results. The study showed that the complex therapy provided statistically significant retention of the PA reflex developed prior to ischemia and a significant decrease in the volume of injury. The anti-amnestic and neuroprotective effects of combination therapy were most pronounced at doses of MEPO-Fc 50 mg/kg and GK-2H 1 mg/kg. Conclusion. This study has confirmed the neuroprotective effect and enhancement of the anti-amnestic effect exerted by the combination of mutant erythropoietin derivatives, MEPO-TR and MEPO-Fc, and the dipeptide mimetic of human growth factor GK-2H.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


2021 ◽  
pp. 1-13
Author(s):  
Claire Rühlmann ◽  
David Dannehl ◽  
Marcus Brodtrück ◽  
Andrew C. Adams ◽  
Jan Stenzel ◽  
...  

Background: To date, there are no effective treatments for Alzheimer’s disease (AD). Thus, a significant need for research of therapies remains. Objective: One promising pharmacological target is the hormone fibroblast growth factor 21 (FGF21), which is thought to be neuroprotective. A clinical candidate for medical use could be the FGF21 analogue LY2405319 (LY), which has a specificity and potency comparable to FGF21. Methods: The present study investigated the potential neuroprotective effect of LY via PPARγ/apoE/abca1 pathway which is known to degrade amyloid-β (Aβ) plaques by using primary glial cells and hippocampal organotypic brain slice cultures (OBSCs) from 30- and 50-week-old transgenic APPswe/PS1dE9 (tg) mice. By LY treatment of 52-week-old tg mice with advanced Aβ deposition, we further aimed to elaborate the effect of LY on AD pathology in vivo. Results: LY application to primary glial cells caused an upregulation of pparγ, apoE, and abca1 mRNA expression and significantly decreased number and area of Aβ plaques in OBSCs. LY treatment in tg mice increased cerebral [18F] FDG uptake and N-acetylaspartate/creatine ratio indicating enhanced neuronal activity and integrity. Although LY did not reduce the number of Aβ plaques in tg mice, the number of iba1-positive cells was significantly decreased indicating reduced microgliosis. Conclusion: These data identified LY in vitro as an activator of Aβ degrading genes leading to cerebral Aβ load amelioration in early and late AD pathology. Although Aβ plaque reduction by LY failed in vivo, LY may be used as therapeutic agent to treat AD-related neuroinflammation and impaired neuronal integrity.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4574
Author(s):  
Mei Chou Lai ◽  
Wayne Young Liu ◽  
Shorong-Shii Liou ◽  
I-Min Liu

Moscatilin can protect rat pheochromocytoma cells against methylglyoxal-induced damage. Elimination of the effect of advanced glycation end-products (AGEs) but activation of AMP-activated protein kinase (AMPK) are the potential therapeutic targets for the neurodegenerative diseases. Our study aimed to clarify AMPK signaling’s role in the beneficial effects of moscatilin on the diabetic/hyperglycemia-associated neurodegenerative disorders. AGEs-induced injury in SH-SY5Y cells was used as an in vitro neurodegenerative model. AGEs stimulation resulted in cellular viability loss and reactive oxygen species production, and mitochondrial membrane potential collapse. It was observed that the cleaved forms of caspase-9, caspase-3, and poly (ADP-ribose) polymerase increased in SH-SY5Y cells following AGEs exposure. AGEs decreased Bcl-2 but increased Bax and p53 expression and nuclear factor kappa-B activation in SH-SY5Y cells. AGEs also attenuated the phosphorylation level of AMPK. These AGEs-induced detrimental effects were ameliorated by moscatilin, which was similar to the actions of metformin. Compound C, an inhibitor of AMPK, abolished the beneficial effects of moscatilin on the regulation of SH-SY5Y cells’ function, indicating the involvement of AMPK. In conclusion, moscatilin offers a promising therapeutic strategy to reduce the neurotoxicity or AMPK dysfunction of AGEs. It provides a potential beneficial effect with AGEs-related neurodegenerative diseases.


Author(s):  
Soma Sundaram

AbstractAim and Objectives The present study was carried out to show the potential neuroprotective effects in both invitro and invivo pramipexole dihydrochloride nanosuspension for the treatment in Parkinson’s disease.Materials and Methods: Nanosuspension of pramipexole dihydrochloride was prepared with MPEG-PCL and Pluronic F68 by the process of modified nanoprecipitation technique with different concentrations of MPEG-PCL. The particle size, zeta potential, SEM, TEM and invitro dug release where performed. The cell viability study was performed by using SH-SY5Y cells. Further the formulation is evaluated for its antioxidant potential against rotenone induced neuronal damage in Wister rats such as enzymatic, non enzymatic antioxidants and histopathological evaluation.Result and Discussion: The nanoformulation shows least particle size of 143 nm and maximum zeta potential value 33.4 mv with 88.53% entrapment efficiency were observed with PMPNP 2 formulation. The SEM, TEM and invitro dug release of PMPNP 2 were shows spherical shape with controlled release when compared to other formulations. Further the MTT assay were performed by using SH-SY5Y cells which shows more than 50 % cell viability with 50 µl of PPMNP 2 nanoformulation. Further the antioxidant potential done in rotenone induced neuronal damage in Wister rats. The results showed elevation in the levels of enzymatic and non enzymatic antioxidants compared with neuronal toxic group. Further nanoformulation group showed decrease in levels of LPO which correlates with histopathological architecture.Conclusion: Our study concluded that nanoformulation showed better protective potential in both invitro and invivo compare to free drug for the treatment in Parkinson’s disease.Keywords: Pramipexoledihydrochloride; MPEG-PCL; SH-SY5Y cells; Nanoprecipitation; Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document