scholarly journals Associated-Extraction Efficiency of Six Cyclodextrins on Various Flavonoids in Puerariae Lobatae Radix

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 93 ◽  
Author(s):  
Tao Feng ◽  
Fan Liu ◽  
Lili Sun ◽  
Hongna Huo ◽  
Xiaoliang Ren ◽  
...  

Puerariae Lobatae Radix (PLR), a well-known herbal medicine, is the root of Pueraria lobata (Willd.) Ohwi and has been employed for the treatment and prevention of cardiovascular and cerebrovascular diseases. The purpose of this study was to compare the associated-extraction efficiency of six cyclodextrins (CDs) on five flavonoids in PLR, namely puerarin, daidzein, daidzin, genistein and genistin, which are the major secondary metabolites, and exhibit low water solubility. The six CDs applied were β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), hydroxypropyl-γ-cyclodextrin (HP-γ-CD), carboxymethyl-β-cyclodextrin (CM-β-CD), and sulfobutyl ether β-cyclodextrin (SBE-β-CD). They can be grouped into one of the following three categories: traditional cyclodextrins (β-CD and γ-CD), water-soluble cyclodextrin derivatives (HP-β-CD and HP-γ-CD) and ionic cyclodextrin derivatives (SBE-β-CD and CM-β-CD). High-performance liquid chromatography (HPLC) was used to analyze the five flavonoids in the original aqueous extracts (OAE) in the presence or absence of various CDs. The associated-extraction efficiency of the various CDs followed the ranking: SBE-β-CD > HP-β-CD > CM-β-CD > HP-γ-CD > γ-CD > β-CD. It was clear that SBE-β-CD presented the highest associated-extraction capability, and it was used to extract the four flavonoids from three PLR products, including raw product, stir- fried product, and product simmered with wheat bran. The results showed that SBE-β-CD could improve the extraction capability of flavonoids, both from the raw product and in processed products of PLR. In conclusion, CDs, especially SBE-β-CD, have a promising application for the associated-extraction of flavonoids from PLR.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1008 ◽  
Author(s):  
Qilei Yang ◽  
Chang Zu ◽  
Wengang Li ◽  
Weiwei Wu ◽  
Yunlong Ge ◽  
...  

Paclitaxel (PTX) is a poor water-soluble antineoplastic drug with significant antitumor activity. However, its low bioavailability is a major obstacle for its biomedical applications. Thus, this experiment is designed to prepare PTX crystal powders through an antisolvent precipitation process using 1-hexyl-3-methylimidazolium bromide (HMImBr) as solvent and water as an antisolvent. The factors influencing saturation solubility of PTX crystal powders in water in water were optimized using a single-factor design. The optimum conditions for the antisolvent precipitation process were as follows: 50 mg/mL concentration of the PTX solution, 25 °C temperature, and 1:7 solvent-to-antisolvent ratio. The PTX crystal powders were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography–mass spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy, solid-state nuclear magnetic resonance, and dissolution and oral bioavailability studies. Results showed that the chemical structure of PTX crystal powders were unchanged; however, precipitation of the crystalline structure changed. The dissolution test showed that the dissolution rate and solubility of PTX crystal powders were nearly 3.21-folds higher compared to raw PTX in water, and 1.27 times higher in artificial gastric juice. Meanwhile, the bioavailability of PTX crystal increased 10.88 times than raw PTX. These results suggested that PTX crystal powders might have potential value to become a new oral PTX formulation with high bioavailability.


Holzforschung ◽  
2015 ◽  
Vol 69 (5) ◽  
pp. 539-545 ◽  
Author(s):  
Yonghong Deng ◽  
Zhuoxi Li ◽  
Xueqing Qiu ◽  
Dacheng Zhao

AbstractLignosulfonic acid (LS) has been applied both as dispersant and dopant for chemical polymerization of 3,4-ethylenedioxythiophene (EDOT). EDOT is successfully polymerized in LS aqueous solutions, resulting in a water-dispersive poly(3,4-ethylenedioxythiophene) (PEDOT) conductive nanoparticle (PEDOT:LS). The structure, intermolecular interaction, and performance of the PEDOT:LS were investigated by ultraviolet-visible-Near-infrared spectrophotometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, dynamic light scattering, transmission electron microscopy, X-ray photoelectron spectroscopy, and surface resistivity tester. Results were interpreted in a way that PEDOT:LS is a polyelectrolyte complex, in which the highly hydrophobic PEDOT is in the inner part of the particle and the LS-rich layer with high hydrophilicity is on its surface. During oxidizing reaction of EDOT to PEDOT in LS, the water-insoluble PEDOT product is adsorbed on the surface of water-soluble LS by electrostatic attraction and forms PEDOT:LS polyelectrolyte complexes. In this process, excess LS is needed to be adsorbed on the surface of PEDOT:LS complexes. The process is driven by π-π interaction to increase the water solubility and contributes to a continuous polymerization. The PEDOT:LS as coating has a good conductivity, transparency, humidity resistance, water resistance, and thermal stability and can be used as high-performance antistatic agents.


Synthesis ◽  
2018 ◽  
Vol 50 (12) ◽  
pp. 2359-2366 ◽  
Author(s):  
Ryan McCulla ◽  
Sara Omlid ◽  
Ankita Isor ◽  
Kathryn Sulkowski ◽  
S. Chintala ◽  
...  

There is a need for efficient methods for the synthesis of water-soluble dibenzothiophene (DBT) and dibenzothiophene S-oxide (DBTO) derivatives to allow for the study of atomic oxygen in biological applications. Attaining water-solubility of aromatic compounds is effectively achieved through functionalization with sulfonic acid groups. Three approaches for the synthesis were considered. An indirect approach was unsuccessful. A modular approach was found to be highly effective for one DBTO disulfonic acid derivative (>99% pure). The direct approach was the most straightforward and highest-yielding route. Additionally, a highly effective, scalable, and improved purification method was identified for disulfonic acid DBT and DBTO derivatives, allowing for the isolation of positional isomers and other modifications by using reverse-phase high-performance flash chromatography.


2019 ◽  
Vol 26 (24) ◽  
pp. 4657-4680 ◽  
Author(s):  
Francesco Lai ◽  
Michele Schlich ◽  
Rosa Pireddu ◽  
Anna Maria Fadda ◽  
Chiara Sinico

: Natural products are an important source of therapeutically effective compounds throughout the world. Since ancient times, a huge amount of both plant extracts and isolated compounds have been largely employed in treatment and prevention of human disorders and, currently, more than 60% of the world’s population trusts on plant medicaments as demonstrated by the increasing quantity of herbal therapeutics in the market. : Unfortunately, several promising natural molecules for the treatment of the most diverse ailments are characterized by extremely unfavourable features, such as low water solubility and poor/irregular bioavailability, which hinder their clinical use. To overcome these limitations and to make herbal therapy more effective, different formulative approaches have been employed. : Among the different strategies for increasing drug solubility, nanocrystals can be considered one of the most interesting and successful approaches. Drug nanocrystals are nanosized drug particles usually formulated as nanosuspensions, namely submicron dispersions in liquid media where surfactants, polymers, or a mixture of both act as stabilisers. : In this review, we described the most significant results and progresses concerning drug nanocrystal formulations for the delivery of natural compounds with a significant pharmacological activity. The text is organized in nine sections, each focusing on a specific poorly water- soluble natural compound (apigenin, quercetin, rutin, curcumin, baicalin and baicalein, hesperetin and hesperidin, resveratrol, lutein, silybin). : To foster the clinical translation of these natural nanomedicines, our opinion is that future research should pair the essential pharmacokinetic studies with carefully designed pre-clinical experiments, able to prove the formulation efficacy in relevant animal models in vivo.


2019 ◽  
Author(s):  
Jenna Franke ◽  
Benjamin Raliski ◽  
Steven Boggess ◽  
Divya Natesan ◽  
Evan Koretsky ◽  
...  

Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based voltage-sensitive fluorophores. The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.


2021 ◽  
Vol 7 (2) ◽  
pp. eabe3097
Author(s):  
Hongwei Sheng ◽  
Jingjing Zhou ◽  
Bo Li ◽  
Yuhang He ◽  
Xuetao Zhang ◽  
...  

It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm−2 at 1 mA cm−2) and energy density (15.64 μWh cm−2) uses two-dimensional, amorphous molybdenum oxide (MoOx) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1915 ◽  
Author(s):  
Eyob Wondu ◽  
Hyun Woo Oh ◽  
Jooheon Kim

In this study water-soluble polyurethane (WSPU) was synthesized from isophorone diisocyanate (IPDI), and polyethylene glycol (PEG), 2-bis(hydroxymethyl) propionic acid or dimethylolpropionic acid (DMPA), butane-1,4-diol (BD), and triethylamine (TEA) using an acetone process. The water solubility was investigated by solubilizing the polymer in water and measuring the contact angle and the results indicated that water solubility and contact angle tendency were increased as the molecular weight of the soft segment decreased, the amount of emulsifier was increased, and soft segment to hard segment ratio was lower. The contact angle of samples without emulsifier was greater than 87°, while that of with emulsifier was less than 67°, indicating a shift from highly hydrophobic to hydrophilic. The WSPU was also analyzed using Fourier transform infrared spectroscopy (FT-IR) to identify the absorption of functional groups and further checked by X-ray photoelectron spectroscopy (XPS). The molecular weight of WSPU was measured using size-exclusion chromatography (SEC). The structure of the WSPU was confirmed by nuclear magnetic resonance spectroscopy (NMR). The thermal properties of WSPU were analyzed using thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC).


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1155 ◽  
Author(s):  
Ghada A. Soliman

Observational studies have shown that dietary fiber intake is associated with decreased risk of cardiovascular disease. Dietary fiber is a non-digestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber. Dietary fibers and lignin are intrinsic to plants and are classified according to their water solubility properties as either soluble or insoluble fibers. Water-soluble fibers include pectin, gums, mucilage, fructans, and some resistant starches. They are present in some fruits, vegetables, oats, and barley. Soluble fibers have been shown to lower blood cholesterol by several mechanisms. On the other hand, water-insoluble fibers mainly include lignin, cellulose, and hemicellulose; whole-grain foods, bran, nuts, and seeds are rich in these fibers. Water-insoluble fibers have rapid gastric emptying, and as such may decrease the intestinal transit time and increase fecal bulk, thus promoting digestive regularity. In addition to dietary fiber, isolated and extracted fibers are known as functional fiber and have been shown to induce beneficial health effects when added to food during processing. The recommended daily allowances (RDAs) for total fiber intake for men and women aged 19–50 are 38 gram/day and 25 gram/day, respectively. It is worth noting that the RDA recommendations are for healthy people and do not apply to individuals with some chronic diseases. Studies have shown that most Americans do not consume the recommended intake of fiber. This review will summarize the current knowledge regarding dietary fiber, sources of food containing fiber, atherosclerosis, and heart disease risk reduction.


2007 ◽  
Vol 90 (26) ◽  
pp. 263503 ◽  
Author(s):  
Wonjoo Lee ◽  
Rajaram S. Mane ◽  
Sun-Ki Min ◽  
Tae Hyun Yoon ◽  
Sung-Hwan Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document