scholarly journals Potential Health Benefits of Ropy Exopolysaccharides Produced by Lactobacillus plantarum

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3293 ◽  
Author(s):  
Tülin Yılmaz ◽  
Ömer Şimşek

The ability of Lactobacillus plantarum to produce exopolysaccharides (EPS) of various structures and properties is effective in showing both starter and probiotic culture qualification. In this study, the potential health promoting functions of the ropy EPS produced by Lactobacillus plantarum strains isolated from tarhana were tested. A stimulation of the pro-inflammatory IL-12 and TNF-α cytokines was observed in the presence of the ropy EPS suggesting an in vitro immune modulation. Similarly, the tested EPS demonstrated promoted the growth of the probiotic strains in fermentation medium. A medium level of radical scavenging activities of ropy EPS was observed whereas the superoxide and hydroxyl scavenging activities were more effective. The ropy EPS also showed α-glucosidase inhibition and cholesterol removal characteristics depending on their concentration. These findings revealed the potential health-promoting functions of ropy EPS from L. plantarum strains and EPS from L. plantarum PFC311 and PFC310 strains demonstrated multiple health-improving effects that can be further evaluated in food and other industries.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jori Fuhren ◽  
Markus Schwalbe ◽  
Lucía Peralta-Marzal ◽  
Christiane Rösch ◽  
Henk A. Schols ◽  
...  

AbstractSeveral Lactobacillus plantarum strains are marketed as probiotics for their potential health benefits. Prebiotics, e.g., galacto-oligosaccharides (GOS), have the potential to selectively stimulate the growth of L. plantarum probiotic strains based on their phenotypic diversity in carbohydrate utilization, and thereby enhance their health promoting effects in the host in a strain-specific manner. Previously, we have shown that GOS variably promotes the strain-specific growth of L. plantarum. In this study we investigated this variation by molecular analysis of GOS utilization by L. plantarum. HPAEC-PAD analysis revealed two distinct GOS utilization phenotypes in L. plantarum. Linking these phenotypes to the strain-specific genotypes led to the identification of a lac operon encoding a β-galactosidase (lacA), a permease (lacS), and a divergently oriented regulator (lacR), that are predicted to be involved in the utilization of higher degree of polymerization (DP) constituents present in GOS (specifically DP of 3–4). Mutation of lacA and lacS in L. plantarum NC8 resulted in reduced growth on GOS, and HPAEC analysis confirmed the role of these genes in the import and utilization of higher-DP GOS constituents. Overall, the results enable the design of highly-selective synbiotic combinations of L. plantarum strain-specific probiotics and specific GOS-prebiotic fractions.


Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 144
Author(s):  
Immacolata Faraone ◽  
Daniela Russo ◽  
Lucia Chiummiento ◽  
Eloy Fernandez ◽  
Alka Choudhary ◽  
...  

The genus Minthostachys belonging to the Lamiaceae family, and is an important South American mint genus used commonly in folk medicine as an aroma in cooking. The phytochemical-rich samples of the aerial parts of Minthostachys diffusa Epling. were tested for pharmacological and health-promoting bioactivities using in vitro chemical and enzymatic assays. A range of radical scavenging activities of the samples against biological radicals such as nitric oxide and superoxide anion and against synthetic 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, the ferric reducing antioxidant power and the lipid peroxidation inhibition were determined and ranked using the ‘relative antioxidant capacity index’ (RACI). The ethyl acetate fraction showed the highest RACI of +1.12. Analysis of the various fractions’ inhibitory ability against enzymes involved in diabetes (α-amylase and α-glucosidase), and against enzymes associated with Parkinson’s or Alzheimer’s diseases (acetylcholinesterase and butyrylcholinesterase) also suggested that the ethyl acetate fraction was the most active. Liquid chromatography–tandem mass spectrometry analysis of the ethyl acetate fraction showed more than 30 polyphenolic compounds, including triterpenes. The inhibitory cholinesterase effects of the triterpenes identified from M. diffusa were further analysed by in silico docking of these compounds into 3D-structures of acetylcholinesterase and butyrylcholinesterase. This is the first study on pharmacological activities and phytochemical profiling of the aerial parts of M. diffusa, showing that this plant, normally used as food in South America, is also rich in health-promoting phytochemicals.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3480
Author(s):  
Adriana Maite Fernández-Fernández ◽  
Eduardo Dellacassa ◽  
Tiziana Nardin ◽  
Roberto Larcher ◽  
Adriana Gámbaro ◽  
...  

The present investigation aimed to provide novel information on the chemical composition and in vitro bioaccessibility of bioactive compounds from raw citrus pomaces (mandarin varieties Clemenule and Ortanique and orange varieties Navel and Valencia). The effects of the baking process on their bioaccessibility was also assessed. Samples of pomaces and biscuits containing them as an ingredient were digested, mimicking the human enzymatic oral gastrointestinal digestion process, and the composition of the digests were analyzed. UHPLC-MS/MS results of the citrus pomaces flavonoid composition showed nobiletin, hesperidin/neohesperidin, tangeretin, heptamethoxyflavone, tetramethylscutellarein, and naringin/narirutin. The analysis of the digests indicated the bioaccessibility of compounds possessing antioxidant [6.6–11.0 mg GAE/g digest, 65.5–97.1 µmol Trolox Equivalents (TE)/g digest, and 135.5–214.8 µmol TE/g digest for total phenol content (TPC), ABTS, and ORAC-FL methods, respectively; significant reduction (p < 0.05) in Reactive Oxygen Species (ROS) formation under tert-butyl hydroperoxide (1 mM)-induced conditions in IEC-6 and CCD-18Co cells when pre-treated with concentrations 5–25 µg/mL of the digests], anti-inflammatory [significant reduction (p < 0.05) in nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages], and antidiabetic (IC50 3.97–11.42 mg/mL and 58.04–105.68 mg/mL for α-glucosidase and α-amylase inhibition capacities) properties in the citrus pomaces under study. In addition, orange pomace biscuits with the nutrition claims “no-added sugars” and “source of fiber”, as well as those with good sensory quality (6.9–6.7, scale 1–9) and potential health promoting properties, were obtained. In conclusion, the results supported the feasibility of citrus pomace as a natural sustainable source of health-promoting compounds such as flavonoids. Unfractionated orange pomace may be employed as a functional food ingredient for reducing the risk of pathophysiological processes linked to oxidative stress, inflammation, and carbohydrate metabolism, such as diabetes, among others.


LWT ◽  
2019 ◽  
Vol 99 ◽  
pp. 346-354 ◽  
Author(s):  
Mutamed Ayyash ◽  
Shao-Quan Liu ◽  
Aysha Al Mheiri ◽  
Mouza Aldhaheri ◽  
Bakhita Raeisi ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1204 ◽  
Author(s):  
César Betancur ◽  
Yordan Martínez ◽  
Guillermo Tellez-Isaias ◽  
Mavir Carolina Avellaneda ◽  
Borja Velázquez-Martí

Three lactic acid strains were isolated from feces of the native Zungo Pelado breed of pigs (n = 5) and presumably identified as belonging to the Lactobacillaceae family by morphological techniques showing that they were Gram-positive/rod-shaped and catalase- and oxidase-negative. They were then identified by biochemical tests using API 50CHL as Lactobacillus plantarum (CAM6), Lactobacillus brevis (CAM7), and Lactobacillus acidophilus (CL4). However, 16S rRNA identification showed that all three strains were Lactobacillus plantarum. Additionally, all three isolates were able to grow in pH 3 and 4. Interestingly, the growth of the CAM7 strain decreased at pH 5.6 compared to that of the CAM6 strain (p < 0.05), and the growth of the CL4 strain was reduced at pH 7(p < 0.05). All three candidates showed good growth on bile salts (≥0.15%), and CAM6 and CAM7 showed better tolerance at higher concentrations (0.30%). Similarly, all strains tolerated sodium chloride (NaCl) concentrations from 2 to 10%. These strains also grew well at all temperatures tested (30, 37, and 42 °C). The CAM6 strain showed in vitro antibacterial activity against selected enteropathogenic bacteria (Escherichia coli strain NBRC 102203 and Salmonella enterica serovar Typhimurium 4.5.12) and commensal bacteria (Klebsiella pneumoniae ATCC BAA-1705D-5 and Pseudomonas aeruginosa ATCC 15442) and resistance to all antibiotics except amoxicillin. Further studies to evaluate the effects of these probiotic candidate strains in commercial pigs are currently underway.


2014 ◽  
Vol 910 ◽  
pp. 137-140
Author(s):  
Chao Hui Xue ◽  
Lan Wei Zhang ◽  
Hong Bo Li ◽  
Shu Mei Wang

Three Lactobacillus strains were screened on the basis of probiotic characteristics (i.e., resistance to low pH and bile salts, adhesion to the human gastrointestinal tract, inhibition of pathogenic strains). They further exhibited producing antimicrobial activities of non-acid molecule (s). In addition, antibacterial peptides were isolated and purified from the cell-free culture supernatants of these three probiotic strains. Based on TricineSDSPAGE, the antimicrobial peptide was approximately 10 kDa in size. After analyzing the sequence of the 16SrDNA regions of these three strains, they were identified asLactobacillus crispatus Lactobacillus rhamnosus and Lactobacillus rhamnosua GG.Using an in vitro system simulating gastric transit, our findings indicated that the three probiotic strains had the ability to tolerate gastroenteric environment and the adhesive capacity to HT-29 cells. It was demonstrated that the probiotic strains inhibited subsequent adhesion of E. coli to the HT-29 cell. Among the selected strains,L. rhamnosusF1333 showed a high probiotic potential and could be used in health-promoting food products.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Venkataramana Heggar Sudeep ◽  
Kuluvar Gouthamchandra ◽  
Siddappa Chandrappa ◽  
Puttaswamy Naveen ◽  
Budanuru Reethi ◽  
...  

Abstract Background Nonetheless curcumin has potential health benefits, its low bioavailability limits the application of conventional turmeric extract with curcumin as major curcuminoid. This is a comparative study to assess the stability, bioaccessibility and biological activity of BDMC in standardized C. longa extract (REVERC3) relative to curcumin in regular turmeric extract (RTE). Here we report the preparation of a standardized Curcuma longa extract (REVERC3™) standardized to contain 75 ± 5 w/w % bisdemethoxycurcumin (BDMC), 1.2 ± 0.8 w/w % curcumin and 10 ± 5 w/w % demethoxycurcumin (DMC). The turmeric extracts were subjected to in vitro gastrointestinal digestion and the curcuminoids in undigested and digested samples were analyzed using HPLC to determine the bioaccessibility. Further, the undigested and digested samples were evaluated for lipase inhibition and antioxidant activities. Male Wistar rats were administered with single dose (1000 mg/kg) of standardized C. longa extract and RTE to determine the plasma concentration of BDMC and curcumin respectively at different time points using LCMS/MS. Results The bioaccessibility of BDMC was significantly higher than curcumin (p < 0.05). BDMC was found superior to curcumin having significant lipase inhibitory effect (p < 0.01), ABTS radical scavenging (p < 0.05), and nitric oxide scavenging activities (p < 0.01). Interestingly, the relative bioavailability of BDMC in standardized C. longa extract was 18.76 compared to curcumin. The Cmax of BDMC was 4.4-fold higher than curcumin. Conclusion BDMC is reported to have higher bioaccessibility and bioavailability than curcumin. Our findings rationalize use of BDMC-enriched standardized C. longa extract for improved physiological benefits counteracting the regular turmeric extract with less bioavailable curcumin as major curcuminoid.


2019 ◽  
Vol 20 (10) ◽  
pp. 874-880 ◽  
Author(s):  
Georgakopoulou Vasiliki ◽  
Dimou Charalampia ◽  
Karantonis Christos Haralabos

Background: The present work evaluated the in vitro antioxidant, antithrombotic, antiatherogenic and antidiabetic activities of Urtica dioica, Sideritis euboea and Cistus creticus and investigated pasta fortification with the most bioactive one. The methods employed were total phenolic content (TPC) in mg of gallic acid equivalents per g of dried-herb, 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) free radical scavenging in mg of dried-herb, cupric reducing antioxidant capacity (CUPRAC) in micromol trolox equivalent per g of dried-herb, platelet aggregation inhibition (PAF-PAI); plasma oxidation inhibition (POxI); and alpha glucosidase inhibition (a-GaseI) all in mg of dried-herb. Pasta fortified with the most bioactive herb was also studied for the above activities. Methods: Cistus creticus extract was more bioactive (p < 0.05) compared to Sideritis euboea and Urtica dioica in all but antithrombotic assay, where Sideritis euboea was superior to the others (TPC: 37.9 ± 0.56 versus 9.6 ± 0.83 and 5.4 ± 0.70; SA50-ABTS: 0.040 ± 0.001 versus 0.400 ± 0.010 and 0.520 ± 0.008; ACUPRAC: 860 ± 6.23 versus 170 ± 4.25 and 80 ± 3.63; IA50-PAF: 1.8 ± 0.14 versus 1.2 ± 0.10 and 5.2 ± 0.21; POxI: 0.095 ± 0.016 versus 0.216 ± 0.021 and 0.534 ± 0.029; IA50-aGase: 0.2 ± 0.01 versus 2.1 ± 0.16 and 1.7 ± 0.12). Results: Fortified pasta with cistus creticus extract exhibited significantly higher levels (p < 0.05) in all assays compared to plain pasta (TPC: 0.392 ± 0.064 versus 0.137 ± 0.020; SA50-ABTS: 9.4 ± 0.2 versus 126.9 ± 2.7; ACUPRAC: 5.4 ± 0.5 versus 0.9 ± 0.1; IA50-PAF: 1.87 ± 0.04 versus 2.28 ± 0.06; POxI: 3.21 ± 0.18 versus 12.2 ± 0.73; IA50-aGase: 8.9 ± 1.1 versus 18.2 ± 0.9). Conclusion: The current findings add to the mounting evidence on the potential health benefits to be derived from consuming pasta fortified with herbal extracts and indicate that Cistus creticus could form an ideal raw material towards the production of fortified pasta with increased nutritional value.


2020 ◽  
Vol 18 ◽  
Author(s):  
Ayisha Aman ◽  
Tooba Shamim ◽  
Ayesha Siddiqui ◽  
Suad Naheed

Background and Objectives: Probiotics are nonpathogenic and beneficial viable microorganisms that exhibit potential health welfare for human beings. Probiotics are found in various food products. They also occur as natural microflora in the intestine of mammals. Main goal of this study was to isolate probiotics conferring antibacterial activity and cholesterol lowering ability from different fruits. Materials and Method: Present research reveals the usefulness of probiotics, in which twenty one bacterial cultures were isolated from different fruit samples including figs, coconut water and grapes. These strains were explored for their antibacterial and cholesterol reduction ability by conducting in vitro experiments. Results and Conclusion: Among twenty one isolates, nine probiotic cultures FgC2, FgC7, FgC14, G2C5, G1C,GrC18 and StCW showed maximum antibacterial activity against different human clinical pathogens. This suggests that these microbes produce inhibitory metabolites which are extracellular and diffusible. For cholesterol assimilation assay, six strains FgC2, FgC7,FgC12, FgC13, GrC7 and GrC18 presented remarkable cholesterol lowering efficacy (up to 98%) when grown in the presence of bile salts. Only potential probiotic cultures were identified and characterized as lactic acid bacteria (LAB), on the basis of Bergey’s Manual of Determinative Bacteriology. Thus this study is helpful to exploit the bioactive and therapeutic potential of beneficial microorganisms so that they can be utilized in the generation of functional food and other health promoting products.


Sign in / Sign up

Export Citation Format

Share Document