scholarly journals Dose-Dependent Effects of Dietary Xylooligosaccharides Supplementation on Microbiota, Fermentation and Metabolism in Healthy Adult Cats

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5030
Author(s):  
Yang Lyu ◽  
Sandra Debevere ◽  
Hermann Bourgeois ◽  
Mavis Ran ◽  
Bart J.G. Broeckx ◽  
...  

In order to investigate the effect and appropriate dose of prebiotics, this study evaluated the effect of two levels of xylooligosaccharides (XOS) in cats. Twenty-four healthy adult cats were divided into three groups: no-XOS control diet with 1% cellulose; low XOS supplementation (LXOS) with 0.04% XOS and 0.96% cellulose; and high XOS supplementation (HXOS) with 0.40% XOS and 0.60% cellulose. Both XOS groups increased blood 3-hydroxybutyryl carnitine levels and decreased hexadecanedioyl carnitine levels. Both XOS treatments displayed an increased bacterial abundance of Blautia, Clostridium XI, and Collinsella and a decreased abundance of Megasphaera and Bifidobacterium. LXOS groups increased fecal pH and bacterial abundance of Streptococcus and Lactobacillus, decreased blood glutaryl carnitine concentration, and Catenibacterium abundance. HXOS group showed a more distinct microbiome profile and higher species richness, and an increased bacterial abundance of Subdoligranulum, Ruminococcaceae genus (unassigned genus), Erysipelotrichaceae genus, and Lachnospiraceae. Correlations between bacterial abundances and blood and fecal parameters were also observed. In conclusion, XOS could benefit feline gut health by altering microbiota; its effects dependant on the dose. The higher-dose XOS increased bacterial populations that possibly promoted intestinal fermentation, while the lower dose altered populations of carbohydrate-metabolic microbiota and possibly modulated host metabolism. Low-dose prebiotics may become a trend in future studies.

2019 ◽  
Vol 7 ◽  
Author(s):  
S. Schauf ◽  
N. Nakamura ◽  
C. Castrillo

SummaryThis study evaluated the effect ofBacillus subtilisC-3102 (Calsporin®) addition to the diet on faecal characteristics and nutrient digestibility in healthy adult dogs. Sixteen Beagles received either a low-energy control diet (CON; 3.35 Mcal metabolisable energy (ME)/kg with 21.8, 27.9, and 50.3% ME as protein, fat, and nitrogen-free extractives (NFE), respectively) or the same diet supplemented withBacillus subtilisat 1 × 109CFU/kg diet as probiotic (PRO) for four weeks in a parallel design (eight dogs per diet). In the prior two weeks, all dogs received a high-energy diet (Advance Medium Adult, Affinity Petcare®, 3.81 Mcal ME/kg ME with 24.8, 41.2, and 34% ME protein, fat, and NFE, respectively). Faecal consistency, dry matter (DM), pH, and NH3were analysed on fresh samples collected at the start and weekly throughout the study. Additional samples were collected for the determination of lactate and short-chain fatty acids (SCFA) on days 0 and 21. In week four, a five–day total faecal collection was conducted in six dogs from each diet for the determination of nutrient apparent digestibility. Dogs fed the PRO diet had more firm faeces (P = 0.011) than control dogs and a higher faecal DM content in the first two weeks (P < 0.05). Feeding the PRO diet resulted in a decline in NH3over four weeks (P = 0.05) and in faecal pH in the first two weeks (P < 0.05) alongside an increase in SCFA content (P = 0.044), mainly acetate (P = 0.024). Faecal lactate did not differ between diets (P > 0.10). Dogs fed the PRO diet showed a higher apparent digestibility of fat (P = 0.031) and NFE (P = 0.038) compared to control dogs. Dog food supplementation with Calsporin®at 1 × 109CFU/kg improved faecal quality, enhanced fat and carbohydrate digestibility, and contributed to the gut health of dogs by reducing gut ammonia and increasing SCFA content.


2017 ◽  
Vol 20 (2) ◽  
pp. 184-188 ◽  
Author(s):  
Jennifer E Slovak ◽  
Nicolas F Villarino

Objectives The aim of this study was to evaluate the safety and clinical effects of intravenous (IV) and oral mycophenolate mofetil (MMF) in healthy cats. Methods A total of 24 healthy adult cats weighing >3.5 kg were either given IV MMF (over a 2 h infusion) or oral MMF. The dosages used were as follows: 5 mg/kg IV once (n = 2), 10 mg/kg q12h IV for 1 day (n = 1), 20 mg/kg q12h IV for 1 day (n = 6) and 10 mg/kg q12h IV for 3 days (n = 5). Blood was collected from each cat at intervals of up to 12 h from the last dose for analysis purposes. Oral MMF was given at 10 mg/kg q12h for 7 days (n = 3), 15 mg/kg q12h for 7 days (n = 3) and 15 mg/kg q8h for 7 days (n = 4). Results Side effects to MMF were minimal. There was no anorexia or vomiting noted in any of the cats during or after IV medication administration. Only 4/14 cats had diarrhea from 12–48 h after IV administration. There was hyporexia in 1/10 cats given oral MMF and no vomiting noted. In 5/10 cats given oral MMF, there was diarrhea between days 2 and 7 of the study. Conclusions and relevance Cats tolerate MMF at an IV dose of 10 mg/kg q12h for 3 days and an oral dose ⩽15 mg/kg q12h for up to 7 days. There seems to be a dose-dependent incidence of gastrointestinal side effects. MMF may be a useful alternative immunosuppressant to be considered for use in some cats.


2021 ◽  
Vol 99 (12) ◽  
Author(s):  
Matthew R Panasevich ◽  
Leighann Daristotle ◽  
Rebecca Quesnell ◽  
Gregory A Reinhart ◽  
Nolan Z Frantz

Abstract A study investigating the use of a nonviable Lactobacillus acidophilus (NVL: Culbac; TransAgra, Storm Lake, IA) and a mixed prebiotic (MP) blend (beet pulp, fructooligosaccharide (FOS), mannanoligosaccharide (MOS), inulin, and kelp) was done to evaluate changes in fecal microbiota, fermentative end products, and gut immune health in healthy female and male adult Beagle dogs (n = 24; 5.74 ± 2.18 yr; 9.30 ± 1.32 kg). The study protocol was first approved by the facility’s Institutional Animal Care and Use Committee (Summit Ridge Farms; Susquehanna, PA) and followed throughout. Each of four test diets (control, NVL, MP, and MP + NVL [formulated to crude protein 25%, crude fat 14%, crude fiber 10% as-fed]) was fed once daily to maintain body weight for 21 d in a randomized-crossover design (four treatment periods and four washout periods). Fecal samples were collected on days 0 and 21 only for immunoglobulin A (IgA) and microbiota evaluation (16S rRNA V4 region and qPCR for Escherichia coli and Bifidobacterium), and fecal fermentative end-products and fecal pH were assessed only on day 21. Over the test periods, apparent total tract nutrient digestibility and stool quality were assessed. Data were analyzed by ANOVA (SAS v9.4, Cary, NC) or Kruskal–Wallis for between-diet effects, and paired t-test or Wilcoxon for time effects. Statistical significance was set at P ≤ 0.05. Apparent total tract nutrient digestibility revealed feeding MP-containing diets resulted in lower (P &lt; 0.05) crude protein and fat digestibility vs. control and NVL diets. When dogs were fed MP, they had lower (P &lt; 0.05) fecal pH compared with control and NVL diets, whereas fecal pH was lower in (P &lt; 0.05) MP + NVL- vs. NVL-fed dogs. Fecal E. coli was (P &lt; 0.05) lower at day 21 vs. day 0 when dogs were fed MP. Fecal Fusobacterium spp. was lower (P &lt; 0.05) in both MP diets vs. control. Fecal Lactobacillus spp. increased (P &lt; 0.05) from baseline with MP. Both diets with MP elicited greater (P &lt; 0.05) fecal acetate and propionate concentration vs. control diet. At day 21, fecal IgA was greater (P &lt; 0.05) in MP and MP + NVL compared with NVL diet. Only when dogs were fed MP did they have increased (P &lt; 0.05) fecal IgA from day 21 vs. day 0. The MP + NVL diet decreased (P &lt; 0.05) fecal isovalerate, isobutyrate, phenol, and indole vs. control. Overall, the MP elicited the most changes on microbiota, fermentative end-products, and IgA. Further investigation into NVL’s gut health benefits is warranted.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 316-317
Author(s):  
Anne H Lee ◽  
Sungho Do ◽  
Amy Schauwecker ◽  
Kelly S Swanson

Abstract Functional ingredients may support gastrointestinal and immune health, but little is known in cats. Our objective was to evaluate the effects of diets containing a blend of fibers, prebiotics, probiotics, and/or immune mediators on stool quality and fecal microbiota, metabolites and immune markers of cats. Twelve healthy adult domestic shorthair cats (age = 9.6±4.0 yr; BW = 3.9±1.0 kg) were used in a replicated 3x3 Latin square design to test diets containing 1) no prebiotics or probiotics (Control), 2) a fiber-prebiotic-probiotic blend-containing formula (Test1), and 3) a fiber-prebiotic-probiotic blend + immuno-modulating ingredient-containing formula (Test2). In each 28-d period, 22d of diet adaptation was followed by fecal and blood sample collection. All procedures were approved by the Kennelwood, Inc. IACUC prior to experimentation. All data were analyzed using Mixed model procedures of SAS 9.4, with significance set at P&lt; 0.05. Fecal pH and SCFA, phenol + indole, and ammonia concentrations were lower in cats fed Control vs. Test1 or Test2 diets. Fecal score was higher (looser stools) and fecal DM was lower in cats fed Control vs. Test2 diet. Fecal butyrate was lowest in cats fed Test2 and highest in cats fed Control. Fecal total BCFA and 7-methylindole were lower in cats fed Control vs. Test1 diet. Fecal IgA concentration was lower in cats fed Test2 vs. Control or Test1 diets. Fecal bacterial alpha-diversity measures of species richness were higher in cats fed Test1 or Test2 vs. Control diet. Fecal Actinobacteria and Megasphaera were higher, and Bacteroidetes, Firmicutes, and Prevotella were lower, in cats fed Control vs. Test1 or Test2 diets. Our results suggest that dietary fibers, prebiotics, and probiotics affect fecal microbiota, metabolites, and immune markers that may impact gastrointestinal health of cats.


2020 ◽  
Vol 21 (3) ◽  
pp. 74-79
Author(s):  
Ahmed Elbaz ◽  
Said El-sheikh

Objective: To investigate the effect of antibiotics and/or probiotics on broiler performance, some serum metabolites, cecum microflora composition, and ileum histomorphology under the Egyptian conditions. Design: Randomized controlled experimental study. Animals: Two hundred forty 1-day-old Ross (308) chicks were reared till 35 days of age. Procedures: The birds were randomly allocated into four main groups: a control diet without additives (CON); probiotic (Lactobacillus acidophilus) supplemented diet (PRO); antibiotic (Avilamycin) supplemented diet (ANT) and a mix group (AP) that received antibiotic in the diet form 1 to 4 days of age and treated during the rest of the experimental period with probiotics. Results: Chickens fed on probiotic or antibiotic diets had linear improvement in live body weight (LBW) and feed conversion ratio (FCR) compared with the control group, while the best LBW and FCR were in the AP group. An improvement in the nutrient digestibility was observed in the probiotic added groups (PRO and AP). Serum cholesterol and low-density lipoprotein cholesterol contents decreased when antimicrobial (probiotic or antibiotic) supplementations were used, while there was an increase in high-density lipoprotein cholesterol contents, serum total protein, and albumin levels. Among all groups, cecum Clostridium perfringens and Escherichia coli counts decreased; however, there was an increase in Lactobacillus count compared to the control group. In probiotic supplemented groups (PRO and AP), a significant (P<0.05) improvement in ilea architecture. Conclusion and clinical relevance: Using probiotic after initial treatment with an antibiotic in broiler diets had a positive effect on broiler growth performance, gut health (improved cecum microbial populations and ileum histomorphology), and nutrient digestibility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yueqin Qiu ◽  
Jun Yang ◽  
Li Wang ◽  
Xuefen Yang ◽  
Kaiguo Gao ◽  
...  

Abstract Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.


Author(s):  
Alison N Beloshapka ◽  
Tzu-Wen L Cross ◽  
Kelly S Swanson

Abstract Resistant starch (RS) is fermentable by gut microbiota and effectively modulates fecal short-chain fatty acid concentrations in pigs, mice, and humans. RS may have similar beneficial effects on the canine gut, but has not been well studied. The objective of this study was to evaluate the effects of 0, 1, 2, 3, and 4% dietary RS (Hi-maize 260) on apparent total tract macronutrient digestibility, and fecal characteristics, fermentative end-product concentrations, and microbiota of healthy adult dogs. An incomplete 5 x 5 Latin square design with 7 dogs and 5 experimental periods was used, with each treatment period lasting 21 d (d 0-17 adaptation; d 18-21 fresh and total fecal collection) and each dog serving as its own control. Seven dogs (mean age = 5.3 yr; mean BW = 20 kg) were randomly allotted to one of five treatments formulated to be iso-energetic and consisting of graded amounts of 100% amylopectin cornstarch, RS, and cellulose, and fed as a top dressing on the food each day. All dogs were fed the same amount of a basal diet throughout the study and fresh water was offered ad libitum. The basal diet contained 6.25% RS (DM basis), contributing approximately 18.3 g of RS/d based on their daily food intake (292.5 g DM/d). Data were evaluated for linear and quadratic effects using SAS. The treatments included 0%, 1%, 2%, 3%, and 4% of an additional RS source. Because Hi-maize 260 is approximately 40% digestible and 60% indigestible starch, the dogs received the following amounts of RS daily: 0% = 18.3 g (18.3 g + 0 g); 1% = 20.1 g (18.3 g + 1.8 g); 2% = 21.9 g (18.3 g + 3.6 g); 3% = 23.7 g (18.3 g + 5.4 g); and 4% = 25.5 g (18.3 g + 7.2 g). Apparent total tract dry matter, organic matter, crude protein, fat, and gross energy digestibilities and fecal pH were linearly decreased (P &lt; 0.05) with increased RS consumption. Fecal output was linearly increased (P &lt; 0.05) with increased RS consumption. Fecal scores and fecal fermentative end-product concentrations were not affected by RS consumption. Although most fecal microbial taxa were not altered, Faecalibacterium were increased (P &lt; 0.05) with increased RS consumption. The decrease in fecal pH and increase in fecal Faecalibacterium would be viewed as being beneficial to gastrointestinal health. Although our results seem to indicate that RS is poorly and/or slowly fermentable in dogs, the lack of observed change may have been due to the rather high level of RS contained in the basal diet.


2011 ◽  
Vol 8 (12) ◽  
pp. 3747-3759 ◽  
Author(s):  
S. B. Neogi ◽  
B. P. Koch ◽  
P. Schmitt-Kopplin ◽  
C. Pohl ◽  
G. Kattner ◽  
...  

Abstract. Little is known about bacterial dynamics in the oligotrophic ocean, particularly about cultivable bacteria. We examined the abundance of total and cultivable bacteria in relation to changes in biogeochemical conditions in the eastern Atlantic Ocean with special regard to Vibrio spp., a group of bacteria that can cause diseases in human and aquatic organisms. Surface, deep water and plankton (<20 μm, 20–55 μm and >55 μm) samples were collected between 50° N and 24° S. Chlorophyll-a was very low (<0.3 μg l−1) in most areas of the nutrient-poor Atlantic, except at a few locations near upwelling regions. In surface water, dissolved organic carbon (DOC) and nitrogen (DON) concentrations were 64–95 μM C and 2–10 μM N accounting for ≥90 % and ≥76 % of total organic C and N, respectively. DOC and DON gradually decreased to ~45 μM C and <5 μM N in the bottom water. In the surface layer, culture independent total bacteria and other prokaryotes represented by 4´-6-diamidino-2-phenylindole (DAPI) counts, ranged mostly between 107 and 108 cells l−1, while cultivable bacterial counts (CBC) and Vibrio spp. were found at concentrations of 104–107 and 102–105 colony forming units (CFU) l−1, respectively. Most bacteria (>99 %) were found in the nanoplankton fraction (<20 μm), however, bacterial abundance did not correlate with suspended particulates (chlorophyll-a, particulate organic C [POC] and N [PON]). Instead, we found a highly significant correlation between bacterial abundance and temperature (p < 0.001) and a significant correlation with DOC and DON (p < 0.005 and <0.01, respectively). In comparison to CBC and DAPI-stained prokaryotes, cultivable Vibrio showed a stronger and highly significant correlation with DOC and DON (p < 0.0005 and p < 0.005, respectively). In cold waters of the mesopelagic and abyssal zones, CBC was 50 to 100-times lower than in the surface layer; however, cultivable Vibrio spp. could be isolated from the bathypelagic zone and even near the seafloor (average ~10 CFU l−1). The depth-wise decrease in CBC and Vibrio coincided with the decrease in both DOC and POC. Our study indicates that Vibrio and other bacteria may largely depend on dissolved organic matter to survive in nutrient-poor oceanic habitats.


2003 ◽  
Vol 90 (6) ◽  
pp. 1071-1080 ◽  
Author(s):  
Samantha Kew ◽  
Edward S. Gibbons ◽  
Frank Thies ◽  
Gerald P. McNeill ◽  
Paul T. Quinlan ◽  
...  

The effects of altering the type of n-3 polyunsaturated fatty acid (PUFA) in the mouse diet on the ability of monocytes and neutrophils to perform phagocytosis were investigated. Male weanling mice were fed for 7 d on one of nine diets which contained 178 g lipid/kg and which differed in the type of n-3 PUFA and in the position of these in dietary triacylglycerol (TAG). The control diet contained 4·4 g α-linolenic acid/100 g total fatty acids. In the other diets, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) replaced a proportion (50 or 100 %) of the α-linolenic acid, and were in the sn-2 or the sn-1(3) position of dietary TAG. There were significant increases in the content of n-3 PUFA in spleen-cell phospholipids when EPA or DHA was fed. These increases were largely independent of the position of EPA or DHA in dietary TAG except when EPA was fed at the highest level, when the incorporation was greater when it was fed in the sn-2 than in the sn-1(3) position. There was no significant effect of dietary DHA on monocyte or neutrophil phagocytic activity. Dietary EPA dose-dependently decreased the number of monocytes and neutrophils performing phagocytosis. However, when EPA was fed in the sn-2 position, the ability of active monocytes or neutrophils to engulf bacteria was increased in a dose-dependent fashion. This did not occur when EPA was fed in the sn-1(3) position. Thus, there appears to be an influence of the position of EPA, but not of DHA, in dietary TAG on its incorporation into cell phospholipids and on the activity of phagocytic cells.


Sign in / Sign up

Export Citation Format

Share Document