scholarly journals Degradation Kinetics and Shelf Life of N-acetylneuraminic Acid at Different pH Values

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5141
Author(s):  
Weiwei Zhu ◽  
Xiangsong Chen ◽  
Lixia Yuan ◽  
Jinyong Wu ◽  
Jianming Yao

The objective of this study was to investigate the stability and degradation kinetics of N-acetylneuraminic acid (Neu5Ac). The pH of the solution strongly influenced the stability of Neu5Ac, which was more stable at neutral pH and low temperatures. Here, we provide detailed information on the degradation kinetics of Neu5Ac at different pH values (1.0, 2.0, 11.0 and 12.0) and temperatures (60, 70, 80 and 90 °C). The study of the degradation of Neu5Ac under strongly acidic conditions (pH 1.0–2.0) is highly pertinent for the hydrolysis of polysialic acid. The degradation kinetics of alkaline deacetylation were also studied. Neu5Ac was highly stable at pH 3.0–10.0, even at high temperature, but the addition of H2O2 greatly reduced its stability at pH 5.0, 7.0 and 9.0. Although Neu5Ac has a number of applications in products of everyday life, there are no reports of rigorous shelf-life studies. This research provides kinetic data that can be used to predict product shelf lives at different temperatures and pH values.

1970 ◽  
Vol 44 (2) ◽  
pp. 147-156
Author(s):  
Tamanna Sultana ◽  
GP Savage ◽  
NG Porter ◽  
DL McNeil ◽  
JR Sedcole

Isothiocyanates (ITCs) contained in purees extracted from wasabi (Wasabia japonica (Miq) Matsum) can be used to manufacture a range of interesting spicy foods. In New Zealand, local manufacturers are showing interest in producing various forms of processed wasabi based sauces. However, isothiocyanates have been shown to degrade quickly in some situations. Therefore, in this study, the stability of allyl ITC was investigated in three wasabi flavoured products stored at four different temperatures (4, 10, 20 and 30°C) for 22 weeks. Two creamy (mayonnaise and tartare) sauces and a non-creamy sauce were prepared from an original recipe and flavoured with a known volume of "wasabi oil". Two types of pouches (clear and metallic plastic) were used to store each product and allyl ITC content was measured in the stored sauces at two week intervals. The initial level of allyl ITC found in mayonnaise, tartare and smoky tomato sauces were 415.3, 411.4 and 144.7 mg/ kg respectively, prior to storage. Temperature showed a strong influence in reducing allyl ITC (P=0.005 to <0.001) but no significant effect was identified for the two types of packets used. The non-creamy smoky tomato sauce was very unstable at 10°C or higher temperatures and the allyl ITC contents reduced rapidly with increasing storage temperatures. For instance, at 30°C, a 66% loss occurred by week 2 and a 90% loss occurred by week 6 in the smoky tomato sauce. However, mayonnaise and tartare sauces had a shelf life of 8 to 9 weeks with only a marginal reduction in allyl ITC (2% overall) at all the stored temperatures (4-30°C). These creamy sauces were characterized by a sudden fall in 10 weeks ending in a 69-70% loss of allyl ITC at 22 weeks. No microbial growth occurred in any of the sauces stored at any of the temperatures during the course of this storage experiment though very small change of colour was noticed for the sauces when stored at 30°C. Keywords: Bangladesh J. Sci. Ind. Res. 44(2), 147-156, 2009DOI: 10.3329/bjsir.v44i2.3665Bangladesh J. Sci. Ind. Res. 44(2), 147-156, 2009


1997 ◽  
Vol 31 (9) ◽  
pp. 992-995 ◽  
Author(s):  
Montserrat Pujol ◽  
Montserrat Muñoz ◽  
Josefina Prat ◽  
Victoria Girona ◽  
Jordi De Bolós

Objective To determine the stability of epirubicin in NaCl 0.9% injection under hospital storage conditions. Methods NaCl 0.9% solution was added to epirubicin iyophilized powder to make a final concentration of 1 mg/mL to study the degradation kinetics and 2 mg/mL to study the stability in polypropylene syringes under hospital conditions. Setting Physical chemistry laboratory, Unitat de Fisicoquímica, Universitat de Barcelona. Main outcome Measures Solutions of epirubicin at 2 mg/mL in NaCl 0.9% solutions stored in plastic syringes were studied under hospital conditions at room temperature (25 ± 1 °C) and under refrigeration (4 ± 1 °C) both protected from light and exposed to room light (~50 lumens/m2). All samples were studied in triplicate and epirubicin concentrations were obtained periodically throughout each storage/time condition via a specific stability-indicating HPLC method. To determine the degradation kinetics, solutions of epirubicin in NaCl 0.9% at 1 mg/mL were stored at different temperatures (40, 50, and 60 °C) to obtain the rate degradation constant and the shelf life at room temperature and under refrigeration. Results The degradation of epirubicin in NaCl 0.9% solutions follows first-order kinetics. The shelf life was defined as the time by which the epirubicin concentration had decreased by 10% from the initial concentration. In this study, epirubicin was stable in NaCl 0.9% injection stored in polypropylene containers for all time periods and all conditions. That results in a shelf life of at least 14 and 180 days at 25 and 4 °C, respectively. The maximum decrease in epirubicin concentration observed at 25 °C and 14 days was 4%, and at 4 °C and 180 days was 8%. The predicted shelf life obtained from the Arrhenius equation was 72.9 ± 0.2 and 3070 ± 15 days at 25 and 4 °C, respectively, in both dark and illuminated conditions. Conclusions Solutions of epirubicin in NaCl 0.9% at 2 mg/mL are chemically stable when they are stored in polypropylene syringes under hospital storage conditions. No special precaution is neccessary to protect epirubicin solutions (2 mg/mL) from light.


2016 ◽  
Vol 34 (10) ◽  
pp. 1175-1184 ◽  
Author(s):  
Giovana Bonat Celli ◽  
Rojin Dibazar ◽  
Amyl Ghanem ◽  
Marianne Su-Ling Brooks

Author(s):  
Adnan Bozdoğan ◽  
Kurban Yaşar

This research was performed to elucidate the effects of temperature on the degradation kinetics of anthocyanins in shalgam beverage. Shalgam beverage was produced according to traditional production method. Then, it was kept at three different temperatures (65°C, 75°C, and 85°C) for 12 hours, and the relevant quantities of anthocyanins were determined thereafter. The research revealed that degradation of the anthocyanins was well described with a 1st-order reaction kinetics model and the R2 values varied in the range of 0.9059-0.9715. Activation energy of the reaction was determined to be 48537 Joule/mole. The half-lives of anthocyanins at 65°C and 75° C, and 85°C were found to be 138.63, 136.72, and 51.57, respectively. Compared the half-life periods at different temperatures, anthocyanins were found to be more resistant at 65°C and 75°C than at 85°C.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2232 ◽  
Author(s):  
Piotr Krawiec ◽  
Łukasz Warguła ◽  
Daniel Małozięć ◽  
Piotr Kaczmarzyk ◽  
Anna Dziechciarz ◽  
...  

The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 433 ◽  
Author(s):  
Tarun Ojha ◽  
Vertika Pathak ◽  
Natascha Drude ◽  
Marek Weiler ◽  
Dirk Rommel ◽  
...  

Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document