scholarly journals Direct and Indirect Antioxidant Effects of Selected Plant Phenolics in Cell-Based Assays

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2534
Author(s):  
Jakub Treml ◽  
Petra Večeřová ◽  
Petra Herczogová ◽  
Karel Šmejkal

Background: Oxidative stress is a key factor in the pathophysiology of many diseases. This study aimed to verify the antioxidant activity of selected plant phenolics in cell-based assays and determine their direct or indirect effects. Methods: The cellular antioxidant assay (CAA) assay was employed for direct scavenging assays. In the indirect approach, the influence of each test substance on the gene and protein expression and activity of selected antioxidant enzymes was observed. One assay also dealt with activation of the Nrf2-ARE pathway. The overall effect of each compound was measured using a glucose oxidative stress protection assay. Results: Among the test compounds, acteoside showed the highest direct scavenging activity and no effect on the expression of antioxidant enzymes. It increased only the activity of catalase. Diplacone was less active in direct antioxidant assays but positively affected enzyme expression and catalase activity. Morusin showed no antioxidant activity in the CAA assay. Similarly, pomiferin had only mild antioxidant activity and proved rather cytotoxic. Conclusions: Of the four selected phenolics, only acteoside and diplacone demonstrated antioxidant effects in cell-based assays.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


2013 ◽  
Vol 4 (3) ◽  
pp. 476 ◽  
Author(s):  
Yuxing Guo ◽  
Daodong Pan ◽  
Zhen Wu ◽  
Chuanchuan Zhao ◽  
Jinxuan Cao

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ke-Xin Zhang ◽  
Jian-Bin Tan ◽  
Cheng-Liang Xie ◽  
Rong-Bo Zheng ◽  
Xiao-Dan Huang ◽  
...  

Herbal tea with antioxidant ingredients has gained increasing attention in the field of functional foods due to their amelioration potential in aging-related diseases. Wanglaoji herbal tea (WHT) is a kind of traditional beverage made from herbal materials. This study was performed to investigate its antioxidant activity and identify its protective effect on a H2O2-induced cell damage model. In this study, we identified six kinds of phenolic acids with antioxidant activity in WHT, among which rosmarinic acid had the highest content and the highest contribution ratio to the antioxidant activity of WHT. Moreover, compared with the H2O2-induced damage group, the WHT treatment group can significantly increase the viability of cells and decrease the ratio of senescence-associated β-galactosidase-positive cells, intracellular malondialdehyde levels, and the percentage of G1 phase. Furthermore, enrichment analysis of differentially expressed genes revealed that heme oxygenase1 (HMOX1) was a key gene for protective effect of WHT on oxidative stress-induced cell damage. Thus, WHT exerted protective effects not only by scavenging reactive oxygen species but also by inducing the expression of cytoprotective genes by activating the HMOX1 pathway, which showed that WHT had a potential of promoting health by reducing oxidative stress-induced cell damage.


Medicina ◽  
2018 ◽  
Vol 55 (1) ◽  
pp. 3 ◽  
Author(s):  
Gökhan Sadi ◽  
Gamze Şahin ◽  
Aykut Bostanci

Background and objectives: Diabetes mellitus is a disease of insulin deficiency or its inability of usage by the target tissues leading to impairment of carbohydrate, lipid, and protein metabolisms. Resveratrol, having robust anti-inflammatory and anti-oxidant properties, has a high potential to treat or prevent the pathogenesis of diseases. This study was conducted to reveal the relationship between diabetes-induced oxidative stress and tissue inflammation with changes in main enzymatic antioxidants (cat, sod, gpx, and gst) and the components of the insulin signaling pathway (insulin Rβ, irs-1, pi3k, akt, mtor) in kidney tissues. Additionally, the effects of resveratrol on these parameters were evaluated. Materials and Methods: Male Wistar rats were randomly divided into four groups; (1) control/vehicle; (2) control/20 mg/kg resveratrol; (3) diabetic/vehicle; (4) diabetic/20 mg/kg resveratrol. Gene and protein expressions of antioxidant enzymes and insulin signaling elements were evaluated in renal tissues. Results: Downregulation of antioxidant enzymes’ gene expression in the kidney tissues of diabetic rats was demonstrated and this situation was devoted partially to the reduced gene expression of nfκb. Moreover, the components of renal insulin signaling elements were upregulated at both gene and protein expression levels in diabetic rats, and resveratrol treatment decreased this sensitization towards the control state. Conclusion: Resveratrol partially improved diabetes-induced renal oxidative stress and inflammation due to healing action on renal antioxidant enzymes and insulin signaling pathway components.


2020 ◽  
Vol 21 (22) ◽  
pp. 8707
Author(s):  
Christian Galasso ◽  
Concetta Piscitelli ◽  
Christophe Brunet ◽  
Clementina Sansone

The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, β-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ahmad Reza Hamidi ◽  
Aboutorab Tabatabaii Naeini ◽  
Nader Tanideh ◽  
Saeed Nazifi

The fruits of <em>Pistacia atlantica</em> (<em>subsp</em>. <em>mutica</em>) have been used traditionally for the treatment of peptic ulcer, as a mouth freshener and have recently been introduced as a source of antioxidant vegetable oils. The aim of this study was to investigate the antioxidant activity of the gel forms, from <em>P</em>. <em>atlantica</em> (<em>subsp. mutica</em>) oil extraction on enzymatic antioxidants in experimental wound created in rat. A square-shaped skin defect (2×2 cm) was created aseptically by surgical excision at the first thoracic vertebrae. Then animals were randomly allocated in four groups (I, untreated controls; II, topically treated base gel; III, topically treated 5% gel; IV, topically treated 10% gel). Blood sampling was accomplished at 3, 7, 10, 14 and 21 days post-injury. Samples were collected for measuring antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxidase activity in red cells) and lipid peroxidation (plasma malondialdehyde). The data analysis generally evidenced that the activities of the main antioxidant enzymes began to decrease significantly at 7 days after the wound was created in control and base gel groups. This remarkable decline became more evident in the period between 10 to 21 days post injury but increased progressively in<em> P. atlantica</em> (<em>subsp. mutica</em>) treatment groups, especially in gel 10% treatment group during wound healing. The results of this study suggest that excision of the wound leads to oxidative stress and topical administration of <em>P. atlantica</em> (<em>subsp. mutica</em>) gels causes remarkable changes in antioxidant parameter during wound closure (especially gel 10%) via pro-oxidative, and antioxidant activity can improve oxidative stress.


2021 ◽  
Vol 8 ◽  
Author(s):  
Martha Guevara-Cruz ◽  
Isabel Medina-Vera ◽  
Trinidad Eugenia Cu-Cañetas ◽  
Yusef Cordero-Chan ◽  
Nimbe Torres ◽  
...  

Chaya is an edible leaf popular in Mexico and Central America because of its high nutritional value. Studies in animal models have demonstrated the beneficial effects of Chaya, which include reduction of circulating lipids and increase in antioxidant activity. However, its hypolipidemic and antioxidant effects have not been demonstrated in humans. Thus, the aim of the present study was to evaluate the effect of Chaya on the lipid profile, lipid peroxidation, inflammation, and peripheral blood mononuclear cell gene expression in a population with dyslipidemia. We performed a single-arm trial in 30 participants with dyslipidemia who consumed 500 mL of Chaya beverage per day over a 6-week period. Interestingly, we observed a significant decrease in serum triglyceride concentration (P &lt; 0.05) and an increase in plasma antioxidant activity and polyphenol concentration (P &lt; 0.005) after 6 weeks of Chaya consumption. This was accompanied by a reduction in the oxidative stress marker MDA (P &lt; 0.0001) and by an increase in the antioxidant enzyme CAT expression in peripheral blood mononuclear cells (P &lt; 0.001). Altogether, our results demonstrate that consumption of Chaya has hypotriglyceridemic and antioxidant effects in subjects with dyslipidemia.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ileana Terruzzi ◽  
Anna Montesano ◽  
Pamela Senesi ◽  
Isabella Villa ◽  
Anita Ferraretto ◽  
...  

Bone fragility and associated fracture risk are major problems in aging. Oxidative stress and mitochondrial dysfunction play a key role in the development of bone fragility. Mitochondrial dysfunction is closely associated with excessive production of reactive oxygen species (ROS). L-Carnitine (L-C), a fundamental cofactor in lipid metabolism, has an important antioxidant property. Several studies have shown how L-C enhances osteoblastic proliferation and activity. In the current study, we investigated the potential effects of L-C on mitochondrial activity, ROS production, and gene expression involved in osteoblastic differentiation using osteoblast-like cells (hOBs) derived from elderly patients. The effect of 5mM L-C treatment on mitochondrial activity and L-C antioxidant activity was studied by ROS production evaluation and cell-based antioxidant activity assay. The possible effects of L-C on hOBs differentiation were assessed by analyzing gene and protein expression by Real Time PCR and western blotting, respectively. L-C enhanced mitochondrial activity and improved antioxidant defense of hOBs. Furthermore, L-C increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II. Additionally, L-C induced the phosphorylation of ERK1/2 and AKT and the main kinases involved in osteoblastic differentiation and upregulated the expression of osteogenic related genes, RUNX2, osterix (OSX), bone sialoprotein (BSP), and osteopontin (OPN) as well as OPN protein synthesis, suggesting that L-C exerts a positive modulation of key osteogenic factors. In conclusion, L-C supplementation could represent a possible adjuvant in the treatment of bone fragility, counteracting oxidative phenomena and promoting bone quality maintenance.


2018 ◽  
Vol 43 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Iara Karise Santos Mendes ◽  
Cristiane Matsuura ◽  
Marcia Barbosa Aguila ◽  
Julio Beltrame Daleprane ◽  
Marcela Anjos Martins ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is a benign condition that can progress to more severe liver damage in a process mediated, in part, by disturbances in redox balance. Additionally, some argue that it is set to become the main cause of end-stage liver disease in the near future. Here, we investigated whether diet-induced weight loss is able to reverse hepatic lipid accumulation and reduce oxidative stress in liver from C57BL/6 mice fed a high-fat (HF) diet. Male C57BL/6 mice were divided into 4 groups: standard chow (SC; 10% energy from fat, 16 weeks); HF (50% energy from fat, 16 weeks); SC-HF (SC for 8 weeks followed by HF for 8 weeks); and HF-SC (HF for 8 weeks followed by SC for 8 weeks). The HF diet during 8 (SC-HF) and 16 weeks (HF) downregulated messenger RNA levels and protein expression of Nrf2 and endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) in the liver; caused liver steatosis; affected liver function markers; increased intra-abdominal and subcutaneous adipose tissue; and induced glucose intolerance and hypercholesterolemia compared with controls (SC). Diet-induced weight loss significantly reduced the intrahepatic lipid accumulation, improved glucose tolerance, and restored both gene and protein expression of the antioxidant enzymes. Our findings suggest that a dietary intervention aimed to induce weight loss may exert protective effects in NAFLD as it can reduce hepatic oxidative stress and intrahepatic lipid accumulation, which can hinder the progression of this condition to more severe states.


Sign in / Sign up

Export Citation Format

Share Document