scholarly journals Effect of Calcium Compound Type and Dosage on the Properties of Acid Rennet Goat’s Milk Gels

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5563
Author(s):  
Małgorzata Pawlos ◽  
Agata Znamirowska ◽  
Katarzyna Szajnar

The aim of this study was to determine the effect of adding calcium compounds to processed goat’s milk, and on the properties of acid rennet goat’s milk gels, which are a middle product obtained in the manufacture of acid rennet cheese. The properties of the gels directly affect the quality of acid rennet cheeses. The analysis of raw goat’s milk was carried out, then acid rennet gels were produced with the addition of six different calcium compounds (chloride, citrate, bisglycinate, gluconate, lactate, and carbonate). The dynamics of milk fermentation were performed by monitoring the pH value of milk during acidification. The pH, syneresis, color, and texture profile were determined in the formulated acid rennet gels. An organoleptic evaluation was also performed. The study demonstrated that, not only calcium chloride, but also calcium citrate, gluconate, lactate, bisglycinate, and calcium carbonate could be used in the production of goat’s milk acid rennet gels, or the middle product in the manufacture of acid rennet curd cheese from goat’s milk. Notably, the addition of citrate, bisglycinate, and calcium carbonate in doses of 20 mg Ca 100 g−1 most effectively reduced syneresis compared to the control sample by 4.76% (citrate), 7.85% (bisglycinate), and 10.28% (carbonate). The hardness of the control gels ranged from 2.35 N to 2.99 N. The addition of chloride, citrate, gluconate, lactate, and calcium carbonate to the milk improved the acid rennet gel’s hardness. The addition of 20 mg Ca 100 g−1 as gluconate increased the hardness the most (3.61 N). When increasing the calcium dosage in the form of all compounds, there was a tendency to increase the gel’s springiness. The addition of chloride, citrate, and bisglycinate to milk did not result in a darkening of the gel’s color. The addition of calcium compounds mostly reduced the intensity of goatish taste and odor. Calcium gluconate, in particular, reduced the goatish taste the most, a taste which is not always acceptable by the consumers.

2021 ◽  
Vol 32 ◽  
pp. 03001
Author(s):  
Alexey Belyaev ◽  
Vladimir Mosyagin ◽  
Galina Ryzhkova ◽  
Olga Shvets

The article presents data on the development of a new fermented milk product kefir from unconventional milk raw materials of goat’s milk and with the addition of blackberry vegetable additive. It is scientifically justified to use blackberry puree in the production technology, as well as the use of an unconventional type of milk for the manufacture of kefir. The influence of blackberries on the quality indicators of the developed kefir was also investigated. Comparative analysis of kefir with different concentrations of blackberries was carried out. According to the results of organoleptic evaluation, it was revealed that the consistency in all samples is uniform, without disturbing the clot. The taste is sour milk, slightly sharp, without extraneous flavors and odors. There is a good slightly sweet blackberry taste and smell with an increase in the concentration of the additive. It can also be noted from the results that kefir with blackberries is enriched with iron and other micro and macro elements in the comparison with the control sample. According to physicochemical indicators, the sample with 10% replacement of milk with mashed potatoes was identified as the closest to the control. The benefit of goat’s milk kefir is due to the presence of various substances necessary for life. The properties of raw materials used are preserved and even enhanced considering the use of fermentation. Such kefir has a lot of natural proteins, the product is easily digested and absorbed by the body. Goat’s kefir makes it possible to improve digestion and metabolic processes in regular consumption. This product reduces the risk of developing most intestinal infections because of rich composition. There are probiotics in such kefir that oppose the spread of harmful microflora in the intestine. The product includes potassium and magnesium minerals that are especially important for normal operation of heart and vessels. There is phosphorus and calcium in it. The joint action of these minerals activates the process of regeneration and strengthening of bone tissue.


Author(s):  
Umair Shabbir ◽  
Nuzhat Huma ◽  
Ahsan Javed

Abstract This study aimed to develop goat’s milk cheese to conserve the major milk constituents. Household dahi (yoghurt) is an inexpensive source of starter cultures that contains several types of microorganism of which most are thermophilic in nature and can be used in the production of goat’s milk cheese. Different concentrations of dahi (0.5%, 1.0%, 1.5%, 2.0% and 2.5%) were used to prepare the cheeses following the standard procedure for cheese manufacturing. The cheeses were analysed for their physicochemical, textural and organoleptic parameters. The highest yield was recorded for T1.0% (17.33%) and the lowest for T2.5% (15.58%). Significant (p < 0.05) differences were found for the pH, acidity and moisture content of the different goat’s milk cheese samples. The moisture content was highest in T0.5% (59.30) and lowest in T2.5% (52.20). The texture profile was significant (p < 0.05) for firmness, adhesiveness, gumminess and chewiness between the treatments. The sensory scores indicated that T1.0% was preferred by the panellists, followed by T1.5% and then the other treatments. It was concluded that goat’s milk cheese could be prepared with good quality characteristics using 1% dahi as the starter culture.


2019 ◽  
Vol 2 (3) ◽  
pp. 426-433
Author(s):  
Nguyen Duc Doan

The objective of the study was to evaluate the effect of cow’s milk added to goat’s milk on physicochemical properties and sensory attributes of yoghurt. Yoghurts prepared from five different proportions of cow’s milk and goat’s milk were stored at 4-6ºC for 1, 7, and 14 days and then evaluated for their physicochemical (total solids, protein, pH, and acidity) and physical properties (viscosity and water holding capacity), and sensory characteristics (acceptability). The total solids of the evaluated yoghurts significantly increased, but the protein content decreased when the amount of cow’s milk increased in the mixtures of milk. The results showed that the pH value of the yoghurt made from only goat’s milk was higher, while the titratable acidity was lower than those of the yoghurts made from the mixtures of goat’s and cow’s milks. The yoghurt obtained from the mixture of milks containing 80% goat’s milk and 20% cow’s milk exhibited the highest viscosity and water holding capacity among the evaluated yoghurts. All the yoghurts received similar scores for color, odor, and texture after all periods of storage, while the highest score in terms of flavor was received for the yoghurt made from the mixture of milks containing 60% goat’s milk and 40% cow’s milk. Addition of cow’s milk to goat’s milk was shown to significantly contribute to the viscosity, water holding capacity, and flavor of the resulting yoghurts.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azwar Azwar ◽  
Hisbullah Hisbullah ◽  
Ahmad Irgi ◽  
Wari Julyadi ◽  
Adisalamun Adisalamun ◽  
...  

Yoghurt is a pro-biotic beverage produced from the fermentation process of milk, namely from vegetable milk (soy milk) or animal milk (goat's milk and cow's milk). During the fermentation process, the chemical reactions that occur will turn milk into yogurt with the help of lactic acid bacteria. In the health sector, yogurt plays a role in increasing the body's immunity, digestive tract health and can prevent osteoporosis. In general, yogurt circulating in the community still has low nutritional content, so a more in-depth study needs to be done. The goal of this research is to examine the quality of yogurt by manipulating certain variables and adding other components to increase the yogurt's quality. Streptococcus thermophilus and Lactobacillus bulgaricus were used as starter as much as 12.5 mL each (10% of 500 mL of cream milk). The fixed variables in this study were the volume of goat's milk 500 ml, cream concentration 6%, pasteurization temperature 85°C, pasteurization time 15 minutes and fermentation temperature 45°C, while the independent variables were varying the length of the fermentation process for 3, 4, 5, 6, 7, 8 and 9 hours. From this study, it was concluded that yogurt with optimum results was obtained at a fermentation time of 6 hours, the pH value was 3.8, lactic acid content was 1.305%, protein content was 5.54%, fat content was 4.98%, and moisture content was 84.10%.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254431
Author(s):  
Magda Filipczak-Fiutak ◽  
Agnieszka Pluta-Kubica ◽  
Jacek Domagała ◽  
Iwona Duda ◽  
Władysław Migdał

The use of small ruminant milk for smoked cheese production makes it possible to incorporate valuable nutrients into the diet, especially as the consumption of unprocessed sheep or goat’s milk is low compared to that from cows. Smoking of food not only prolongs its shelf-life but also improves its flavour. Taking the fact that many consumers do not accept some organoleptic properties of milk from small ruminants into account, the aim of the study was to assess and compare the organoleptic and nutritional properties of traditionally smoked cheeses made from goat, sheep and cow’s milk. The analysed cheeses differed in terms of dry matter content and its components such as protein and fat. Their acidity was comparable, except for the sample made of raw goat’s milk, which was characterised by a relatively high pH value (6.12 ± 0.06). The highest content of CLA (2.30 ± 0.04%), as well as the highest share of unsaturated and polyunsaturated fatty acids, was determined in the cheese made from sheep’s milk. Moreover, the content of butyric and caproic free fatty acids in cheeses made from goat’s milk was found to be several times higher than in the other analysed cheeses. The organoleptic assessment did not reveal any significant differences between the cheeses produced at small, private farms and in industrial conditions, or between different types of cheese, regardless of the type of milk from which they were produced.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 994
Author(s):  
Małgorzata Pawlos ◽  
Agata Znamirowska ◽  
Grzegorz Zaguła ◽  
Magdalena Buniowska

Amino acid chelates are a new group of compounds approved for food enrichment, however there is no previous research using calcium amino acid chelate to enrich goat’s milk products. The purpose of this research was to evaluate the possibility of using calcium amino acid chelate to produce goat’s acid-curd cheese. In this study, four types of acid-curd cheeses from goat’s milk subjected to 85 °C/5 min treatment were produced: control cheeses—made from milk without calcium addition and cheeses from milk enriched with 30, 35 and 40 mg of Ca (in 100 g of milk) in the form of calcium amino acid chelate. Goat cheese with calcium amino acid chelate had a higher moisture content, and a lower fat content. More fat was separated with the whey. In cheeses made from the milk with calcium amino acid chelate there was no goaty taste. Enrichment with 35 mg of Ca in 100 g of goat milk increased the calcium content in cheese by 60.5% in comparison to the control sample. However, the enrichment of goat milk with 40 mg Ca (in 100 g of processed milk) increased the calcium content in cheese by only 63.29%.


2019 ◽  
Vol 2 (3) ◽  
pp. 426-433
Author(s):  
Nguyen Duc Doan

The objective of the study was to evaluate the effect of cow’s milk added to goat’s milk on physicochemical properties and sensory attributes of yoghurt. Yoghurts prepared from five different proportions of cow’s milk and goat’s milk were stored at 4-6ºC for 1, 7, and 14 days and then evaluated for their physicochemical (total solids, protein, pH, and acidity) and physical properties (viscosity and water holding capacity), and sensory characteristics (acceptability). The total solids of the evaluated yoghurts significantly increased, but the protein content decreased when the amount of cow’s milk increased in the mixtures of milk. The results showed that the pH value of the yoghurt made from only goat’s milk was higher, while the titratable acidity was lower than those of the yoghurts made from the mixtures of goat’s and cow’s milks. The yoghurt obtained from the mixture of milks containing 80% goat’s milk and 20% cow’s milk exhibited the highest viscosity and water holding capacity among the evaluated yoghurts. All the yoghurts received similar scores for color, odor, and texture after all periods of storage, while the highest score in terms of flavor was received for the yoghurt made from the mixture of milks containing 60% goat’s milk and 40% cow’s milk. Addition of cow’s milk to goat’s milk was shown to significantly contribute to the viscosity, water holding capacity, and flavor of the resulting yoghurts.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
K. Szajnar ◽  
M. Pawlos ◽  
A. Znamirowska

The global market for sheep’s milk and its products is increasing due to higher demand for cheese and traditional dairy products, and as a novelty, sheep’s milk is an ingredient in infant formulas and nutraceuticals. The aim of this study was to determine the properties of fermented sheep’s milk, which combines probiotic benefits with increased dietary fiber content. The influence of the applied dose of chokeberry fiber on the growth of living cells of Lactobacillus acidophilus and Lactobacillus rhamnosus in fermented sheep’s milk was also evaluated. Sheep milk with the addition of 0% (control sample), 1.5%, and 3.0% chokeberry fiber was fermented by two different probiotic monocultures L. acidophilus and L. rhamnosus. In the fermented milk, pH value, syneresis (%), color, and texture were determined. Furthermore, the microbiological analysis and an organoleptic evaluation were performed. With the increasing dose of chokeberry fiber, the pH value decreased already before the fermentation process. After fermentation, the milk’s pH values with fiber were still lower than those in the control sample. Presumably, more acidic metabolites were produced by L. acidophilus, causing a more intense reduction of the pH value than L. rhamnosus both in control milk and in milk with the addition of fiber. The addition of chokeberry fiber affected the stimulation of the growth of both types of bacteria. In the milk sample without fiber addition, a more significant number of viable cells were counted for L. acidophilus by 0.5 log CFU g-1 more than the milk fermented with L. rhamnosus. Furthermore, in milk fermented by L. acidophilus with 1.5% chokeberry fiber (LA1), the number of viable bacterial cells was higher than that in milk fermented by L. rhamnosus with the same addition of fiber (LR1). However, in sample LA3, the number of viable bacterial cells was lower than that in sample LR3. Tested fermented sheep milk met the Recommendation of the International Dairy Federation’s requirements regarding the number of live bacterial cells for dairy probiotics. The addition of chokeberry fiber increased syneresis in each fermented milk group, regardless of the bacteria used for fermentation. Moreover, the use of fiber caused a significant reduction in brightness L ∗ , an increase of red color, and a decrease of yellow color. Milk fermented with L. acidophilus was characterized by a harder gel, compared to their analogues fermented with L. rhamnosus. The addition of fiber intensified the sour taste and the taste of the additive in both types of fermented sheep milk.


2019 ◽  
Vol 43 (1) ◽  
pp. 50-58
Author(s):  
H. S. Alnaemi

     Fate of AflatoxinM1 in soft white cheese and its by-product (whey) and in yogurt locally made from raw sheep's and goat's milk experimentally inoculated with 0.05 and 0.5 µg/l AflatoxinM1 were investigated using ELISA technique. Results reported that AflatoxinM1 was concentrated in cheese at levels significantly higher than that recorded in the raw milk that used for its processing, with a significant decrease in AflatoxinM1 levels in its by-product (whey) comparable to the raw milk used in manufacturing at both inoculated levels. Yogurt produced from raw sheep's milk at second inoculated level exerted AflatoxinM1concentration significantly lower than that present in the milk. Significant differences in AflatoxinM1distribution in cheese and whey produced from sheep's milk comparable to their counterparts produced from goat's milk were recorded. Finally, results revealed the efficacious role of the various dairy manufacturing processes in AflatoxinM1 distribution and the necessity to issue of local legislations concerning the maximum permissible limits for AflatoxinM1 in milk in order to stay within the universal permissible levels for AflatoxinM1 in dairy products to provide greater protection for consumer health. 


Sign in / Sign up

Export Citation Format

Share Document