scholarly journals Cudraxanthone D Ameliorates Psoriasis-like Skin Inflammation in an Imiquimod-Induced Mouse Model via Inhibiting the Inflammatory Signaling Pathways

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6086
Author(s):  
Namkyung Kim ◽  
Soyoung Lee ◽  
Jinjoo Kang ◽  
Young-Ae Choi ◽  
Yong Hyun Jang ◽  
...  

Psoriasis is a chronic inflammatory skin disease accompanied by excessive keratinocyte proliferation. Corticosteroids, vitamin D3 analogs, and calcineurin inhibitors, which are used to treat psoriasis, have diverse adverse effects, whereas natural products are popular due to their high efficiency and relatively low toxicity. The roots of the Cudrania tricuspidata (C. tricuspidata) are known to have diverse pharmacological effects, among which the anti-inflammatory effect is reported as a potential therapeutic agent in skin cells. Nevertheless, its effectiveness against skin diseases, especially psoriasis, is not fully elucidated. Here, we investigated the effect of cudraxanthone D (CD), extracted from the roots the C. tricuspidata Bureau, on psoriasis using an imiquimod (IMQ)-induced mouse model and the tumor necrosis factor (TNF)-α/interferon (IFN)-γ-activated keratinocytes. IMQ was topically applied to the back skin of C57BL/6 mice for seven consecutive days, and the mice were orally administered with CD. This resulted in reduced psoriatic characteristics, such as the skin thickness and Psoriasis Area Severity Index score, and the infiltration of neutrophils in IMQ-induced skin. CD inhibited the serum levels of TNF-α, immunoglobulin G2a, and myeloperoxidase, and the expression of Th1/Th17 cells in splenocytes. In TNF-α/IFN-γ-activated keratinocytes, CD reduced the expressions of CCL17, IL-1β, IL-6, and IL-8 by inhibiting the phosphorylation of STAT1 and the nuclear translocation of NF-kB. Taken together, these results suggest that CD could be a potential drug candidate for the treatment of psoriasis.

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4409
Author(s):  
Jinjoo Kang ◽  
Soyoung Lee ◽  
Namkyung Kim ◽  
Hima Dhakal ◽  
Taeg-Kyu Kwon ◽  
...  

The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1β, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1β, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1230
Author(s):  
Sumin Pyeon ◽  
Ok-Kyung Kim ◽  
Ho-Geun Yoon ◽  
Shintae Kim ◽  
Kyung-Chul Choi ◽  
...  

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by immune hypersensitivity reaction. The cause of AD is unclear, but its symptoms have a negative effect on quality of life; various treatment methods to alleviate these symptoms are underway. In the present study, we aimed to evaluate in vitro antioxidant and anti-inflammatory effects of Rubus coreanus water extract (RCW) on AD. Total phenolic compounds and flavonoid content of RCW were 4242.40 ± 54.84 mg GAE/g RCE and 1010.99 ± 14.75 mg CE/g RCW, respectively. RCW reduced intracellular reactive oxygen species level and increased the action of antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-stimulated HaCaT cells. Moreover, mRNA expression of the pro-inflammatory cytokines, including TNF-α, interleukin-1β, and interleukin-6, was downregulated by RCW in the TNF-α/IFN-γ-stimulated cells. The levels of inflammatory chemokines (thymus- and activation-regulated chemokine; eotaxin; macrophage-derived chemokine; regulated on activation, normal T-cell expressed and secreted; and granulocyte-macrophage colony-stimulating factor) and intercellular adhesion molecule-1 were decreased in the TNF-α/IFN-γ-stimulated HaCaT cells after RCW treatment. Additionally, the mRNA expression levels of filaggrin and involucrin, proteins that form the skin, were increased by RCW. Furthermore, RCW inhibited the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway in the TNF-α/IFN-γ-stimulated HaCaT cells. Collectively, the present investigation indicates that RCW is a potent substance that inhibits AD.


2020 ◽  
Vol 53 (1) ◽  
Author(s):  
Jintao Gao ◽  
Fangru Chen ◽  
Huanan Fang ◽  
Jing Mi ◽  
Qi Qi ◽  
...  

Abstract Background Psoriasis is a common chronic inflammatory skin disease. Keratinocytes hyperproliferation and excessive inflammatory response contribute to psoriasis pathogenesis. The agents able to attenuate keratinocytes hyperproliferation and excessive inflammatory response are considered to be potentially useful for psoriasis treatment. Daphnetin exhibits broad bioactivities including anti-proliferation and anti-inflammatory. This study aims to evaluate the anti-psoriatic potential of daphnetin in vitro and in vivo, and explore underlying mechanisms. Methods HaCaT keratinocytes was stimulated with the mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish psoriatic keratinocyte model in vitro. Cell viability was measured using Cell Counting Kit-8 (CCK-8). Quantitative Real-Time PCR (qRT-PCR) was performed to measure the mRNA levels of hyperproliferative marker gene keratin 6 (KRT6), differentiation marker gene keratin 1 (KRT1) and inflammatory factors IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. Western blotting was used to detect the protein levels of p65 and p-p65. Indirect immunofluorescence assay (IFA) was carried out to detect p65 nuclear translocation. Imiquimod (IMQ) was used to construct psoriasis-like mouse model. Psoriasis severity (erythema, scaling) was scored based on Psoriasis Area Severity Index (PASI). Hematoxylin and eosin (H&E) staining was performed to examine histological change in skin lesion. The expression of inflammatory factors including IL-6, TNF-α, IL-23A and IL-17A in skin lesion was measured by qRT-PCR. Results Daphnetin attenuated M5-induced hyperproliferation in HaCaT keratinocytes. M5 stimulation significantly upregulated mRNA levels of IL-1β, IL-6, IL-8, TNF-α, IL-23A and MCP-1. However, daphnetin treatment partially attenuated the upregulation of those inflammatory cytokines. Daphnetin was found to be able to inhibit p65 phosphorylation and nuclear translocation in HaCaT keratinocytes. In addition, daphnetin significantly ameliorate the severity of skin lesion (erythema, scaling and epidermal thickness, inflammatory cell infiltration) in IMQ-induced psoriasis-like mouse model. Daphnetin treatment attenuated IMQ-induced upregulation of inflammatory cytokines including IL-6, IL-23A and IL-17A in skin lesion of mice. Conclusions Daphnetin was able to attenuate proliferation and inflammatory response induced by M5 in HaCaT keratinocytes through suppression of NF-κB signaling pathway. Daphnetin could ameliorate the severity of skin lesion and improve inflammation status in IMQ-induced psoriasis-like mouse model. Daphnetin could be an attractive candidate for future development as an anti-psoriatic agent.


2020 ◽  
Author(s):  
Xuan Lai ◽  
Menglei Wang ◽  
Yixia Zhu ◽  
Xiaoli Feng ◽  
Huimin Liang ◽  
...  

Abstract Background This study aimed to confirm the safety and risk of applying zinc oxide nanoparticles (ZnO NPs) to pathological skin, such as psoriasis-like skin. The majority of previous studies confirmed the safety of applying ZnO NPs to normal skin. However, we know very little about the risks of using sunscreen, cosmetics and topical drugs containing ZnO NPs for individuals with skin diseases. In addition, some studies claimed that ZnO NPs can penetrate normal or pathological skin, and ZnO NPs have frequently been reported to have proinflammatory and lethal effects in vitro. Therefore, it is necessary to evaluate the safety of applying ZnO NPs to pathological skin. Results ZnO NPs passed through gaps between keratinocytes and entered stratum basale of epidermis and dermis in imiquimod (IMQ)-induced psoriasis-like skin lesions. Application of a ZnO NP-containing suspension for 3 connective days delayed the healing of the epidermal barrier; increased the expression levels of inflammatory cytokines; promoted keratinocyte apoptosis and disturbed redox homeostasis. In vitro, ZnO NPs promoted TNF-α, IL-1β and IL-6 secretion and apoptosis of recombinant-human-TNF-α-stimulated HaCaT cells. NF-κB, ERK, p38 and JNK inhibitors blocked ZnO NP-induced inflammation. JSH-23, an inhibitor of the nuclear translocation of p-NF-κB p65, and NAC, an acetylated precursor of L-cysteine, not only inhibited the ZnO NP-induced inflammation but also inhibited apoptosis and cysteine deficiency. Neither erastin nor RSL3 induced p-NF-κB p65 nuclear translocation, but they did reduce cysteine biosynthesis. Additionally, ferropstatin-1, an inhibitor of lipid peroxidation, partially rescued ZnO NP-induced decreases in cell viability and cysteine content. Conclusions ZnO NPs delay the recovery of psoriasis-like skin lesions through promoting inflammation and keratinocyte apoptosis via the nuclear translocation of phosphorylated NF-κB p65 and cysteine deficiency. This work reminds the public that ZnO NPs are not safe for pathological skin, especially in inflammatory skin diseases such as psoriasis, and has revealed a partial mechanism by which ZnO NPs delay the recovery of pathological skin, promoting the appropriate use of ZnO NPs.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaopeng Liu ◽  
Xufeng Lu ◽  
Zhixiong Hu

Background. N-Acetylcysteine (NAC) had exerted antioxidation and anti-inflammation effects on chronic obstructive pulmonary disease (COPD) patients. However, its effect in regulating interleukin- (IL-) 18 was not fully understood. This study was designed to evaluate the specific mechanism of NAC regulating IL-18. Materials and Methods. A total of 112 COPD patients and 103 health individuals were recruited in the study. Cytokine level in patients’ serum was measured by enzyme-linked immunosorbent assay (ELISA). A COPD mouse model was established by administration of lipopolysaccharide (LPS) and cigarette smoke. The expression of cytokines was measured by ELISA and flow cytometry. Inflammasome-related protein was measured by Western blot. Result. NAC could effectively improve the immune status of COPD patients as well as the COPD mouse model by downregulating proinflammation and inflammation cytokines including IL-1β, interferon- (IFN-) γ, tumor necrosis factor- (TNF-) α, and IL-18. It also had the capability to suppress synthesis of IL-18 in macrophage to inhibit the secretion of IFN-γ from natural killer (NK) cells through influencing the inflammasome-related protein in macrophages. Conclusion. NAC could effectively inhibit the production of IL-18 by suppressing NLRP3 expression in macrophages to reduce the production of IFN-γ in NK cells.


Rheumatology ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 742-753 ◽  
Author(s):  
Isabel Castro ◽  
Nicolás Albornoz ◽  
Sergio Aguilera ◽  
María-José Barrera ◽  
Sergio González ◽  
...  

Abstract Objectives Xerostomia in SS patients has been associated with low quality and quantity of salivary mucins, which are fundamental for the hydration and protection of the oral mucosa. The aim of this study was to evaluate if cytokines induce aberrant mucin expression and whether tauroursodeoxycholic acid (TUDCA) is able to counteract such an anomaly. Methods Labial salivary glands from 16 SS patients and 15 control subjects, as well as 3D acini or human submandibular gland cells stimulated with TNF-α or IFN-γ and co-incubated with TUDCA, were analysed. mRNA and protein levels of Mucin 1 (MUC1) and MUC7 were determined by RT-qPCR and western blot, respectively. Co-immunoprecipitation and immunofluorescence assays for mucins and GRP78 [an endoplasmic reticulum (ER)-resident protein] were also performed. mRNA levels of RelA/p65 (nuclear factor-κB subunit), TNF-α, IL-1β, IL-6, SEL1L and EDEM1 were determined by RT-qPCR, and RelA/p65 localization was evaluated by immunofluorescence. Results MUC1 is overexpressed and accumulated in the ER of labial salivary gland from SS patients, while MUC7 accumulates throughout the cytoplasm of acinar cells; however, MUC1, but not MUC7, co-precipitated with GRP78. TUDCA diminished the overexpression and aberrant accumulation of MUC1 induced by TNF-α and IFN-γ, as well as the nuclear translocation of RelA/p65, together with the expression of inflammatory and ER stress markers in 3D acini. Conclusion Chronic inflammation alters the secretory process of MUC1, inducing ER stress and affecting the quality of saliva in SS patients. TUDCA showed anti-inflammatory properties decreasing aberrant MUC1 accumulation. Further studies are necessary to evaluate the potential therapeutic effect of TUDCA in restoring glandular homeostasis in SS patients.


2001 ◽  
Vol 75 (21) ◽  
pp. 10170-10178 ◽  
Author(s):  
Søren R. Paludan ◽  
Søren C. Mogensen

ABSTRACT Macrophages respond to virus infections by rapidly secreting proinflammatory cytokines, which play an important role in the first line of defense. Tumor necrosis factor alpha (TNF-α) is one of the major macrophage-produced cytokines. In this study we have investigated the virus-cell interactions responsible for induction of TNF-α expression in herpes simplex virus (HSV)-infected macrophages. Both HSV type 1 (HSV-1) and HSV-2 induced TNF-α expression in macrophages activated with gamma interferon (IFN-γ). This induction was to some extent sensitive to UV treatment of the virus. Virus particles unable to enter the cells displayed reduced capacity to stimulate TNF-α expression but retained a significant portion which was abolished by HSV-specific antibodies. Recombinant HSV-1 glycoprotein D was able to trigger TNF-α secretion in concert with IFN-γ. Sugar moieties of HSV glycoproteins have been reported to be involved in induction of IFN-α but did not contribute to TNF-α expression in macrophages. Moreover, the entry-dependent portion of the TNF-α induction was investigated with HSV-1 mutants and found to be independent of the tegument proteins VP16 and UL13 and partly dependent on nuclear translocation of the viral DNA. Finally, we found that macrophages expressing an inactive mutant of the double-stranded RNA (dsRNA)-activated protein kinase (PKR) produced less TNF-α in response to infectious HSV infection than the empty-vector control cell line but displayed the same responsiveness to UV-inactivated virus. These results indicate that HSV induces TNF-α expression in macrophages through mechanisms involving (i) viral glycoproteins, (ii) early postentry events occurring prior to nuclear translocation of viral DNA, and (iii) viral dsRNA-PKR.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 904-904
Author(s):  
Steffen E. Meiler ◽  
Marlene Wade ◽  
Laure Moutouh de Parseval ◽  
Laura G Corral ◽  
Paul S. Swerdlow ◽  
...  

Abstract Abstract 904 Introduction: We previously reported that Pomalidomide (PL), a novel thalidomide-derived immunomodulatory drug (IMiD), is capable of enhancing erythropoiesis and fetal hemoglobin (HbF) production in a knockout-transgenic (KT) mouse model of sickle cell anemia (SCA). In addition to these hematological properties, PL is known to modulate specific effector functions of the innate and adaptive immune system. PL and other IMiDs potently inhibit the output of the inflammatory mediators TNF-α, IL-1β, and IL-6 in activated monocytes/macrophages, whereas their ability to promote T helper 1 (Th1) lymphocyte differentiation and co-stimulation of both CD4+ and CD8+ T lymphocytes can lead to increased TNF-α, IL-2, and IFN-γ secretion in both cell culture and human subjects. SCA is an inflammatory disease. It is therefore conceivable that PL could diminish disease severity in SCA by targeting vascular endothelial and innate immune cell activation, whereas preferential induction of a Th1-biased lymphocyte program could have unwanted effects. To test these possibilities in SCA, we evaluated PL's immunomodulatory activities in a relevant KT mouse model. Methods: Animals. Six week old KT homozygous sickle mice were treated daily (Mon-Fri; i.p. injections) for eight weeks with Vehicle (n=8) or PL (10 mg/kg; n=9). Mice were maintained in an accredited pathogen-free animal facility according to NIH and institutional guidelines. Mice were anesthetized with Ketamine/Xylazine and blood collected by intracardiac puncture into 0.5 ml vacutainer EDTA tubes (Becton-Dickinson). Soluble plasma adhesion molecules (sVCAM-1, sICAM-1, and sE-Selectin) and cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-17, IFN-γ, TNF-α, G-CSF, and GM-CSF) were measured by ELISA (R&D Systems and SABiosciences). Organ analysis. We focused our analysis on the liver of KT mice because this organ manifests severe sickle cell-related pathology. Livers were removed and divided for H&E paraffin sections, immunohistochemistry, and RNA analysis (storage at -80°C). The area of liver ischemic infarcts (ALI) was measured on H&E tissue sections using an image processing program (Image J, NIH) and averaged from four randomly selected low power optical fields (5x) / animal. Whole liver RNA was pooled from PL animals with low ALI scores (n=2) and vehicle animals (n=3) using Trizol followed by RNeasy column purification. RNA was submitted to SABioscience for analysis using the 440 gene Inflammatory Response and Autoimmunity GEArray. Statistical analysis. One-Way ANOVA/Student-Newman-Kuels and Kruskal-Wallis One-Way ANOVA/Dunn's Method (Sigma Stat). Data are reported as the mean ± SE. A P-value of < 0.05 was considered significant. Results: The peritoneal cavity of all animals was free of adhesions, exudates and drug, suggesting that daily i.p. injections did not inflame the peritoneal membranes and resulted in complete absorption of the active compound. PL significantly reduced the level of the endothelial cell marker of inflammation, sVCAM-1 (sVCAM-1[ng/ml]: Veh: 1202±36; PL: 962±48; P<0.01), but did not affect sICAM-1 or sE-Selectin. Plasma cytokines in vehicle animals were measured at the assay's lower limit of detection and were not significantly modified by PL, suggesting that PL did not induce overt activation of the TH1 lymphocyte program. Liver histology in vehicle controls revealed scattered tissue infarcts surrounded by a mixed inflammatory cell infiltrate (macrophages [F4/80+], T-lymphocytes [CD3+]). PL reduced the ALI by 60 % (ALI [mm2/LPF: Veh: 0.30±0.05; PL: 0.12±0.06; P=0.01). The ALI score of eight out of nine PL mice was lower than the lowest score in the vehicle group (89% responder rate). Gene array data were consistent with decreased organ inflammation (serum amyloid A2 [-3.57 fold]), modifications in antigen presentation (CD74 [-2.12 fold]), inhibition of T-cell signaling (SLAP-2 [+5.68 fold]; SLP-76 [-1.92 fold]), and reduced T-cell migration (MIP-3β [-2.56 fold]). Tissue protection in the PL group did not correlate with HbF expression, total WBC count, or any other hematological variable. Summary & Conclusions: Pomalidomide modulates vascular and tissue markers of inflammation and protects from sickle cell-induced organ damage in a HbF-independent manner. These data suggest that PL, in addition to its HbF-inducing properties, may exert beneficial anti-inflammatory effects in SCA. Disclosures: Meiler: Celgene: Research Funding. Wade:Celgene: Research Funding. Moutouh de Parseval:Celgene: Employment. Corral:Celgene: Employment. Swerdlow:Celgene: Research Funding. Kutlar:Celgene: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document