scholarly journals Water-in-Oil-in-Water Double Emulsions as Protective Carriers for Sambucus nigra L. Coloring Systems

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 552
Author(s):  
Liandra G. Teixeira ◽  
Stephany Rezende ◽  
Ângela Fernandes ◽  
Isabel P. Fernandes ◽  
Lillian Barros ◽  
...  

The use of natural colorants is needed to overcome consumer concerns regarding synthetic food colorants′ safety. However, natural pigments have, in general, poor stability against environmental stresses such as temperature, ionic strength, moisture, light, and pH, among others. In this work, water-in-oil-in-water (W1/O/W2) emulsions were used as protective carriers to improve color stability of a hydrophilic Sambucus nigra L. extract against pH changes. The chemical system comprised water and corn oil as the aqueous and oil phases, respectively, and polyglycerol polyricinoleate (PGPR), Tween 80, and gum Arabic as stabilizers. The primary emulsion was prepared using a W1/O ratio of 40/60 (v/v). For the secondary emulsion, W1/O/W2, different (W1/O)/W2 ratios were tested with the 50/50 (v/v) formulation presenting the best stability, being selected as the coloring system to test in food matrices of different pH: natural yogurt (pH 4.65), rice drink (pH 6.01), cow milk (pH 6.47), and soy drink (pH 7.92). Compared to the direct use of the extract, the double emulsion solution gave rise to higher color stability with pH change and storage time, as corroborated by visual and statistical analysis.

2021 ◽  
Vol 307 ◽  
pp. 110625
Author(s):  
Jinning Liu ◽  
Hualu Zhou ◽  
Yunbing Tan ◽  
Jorge L. Muriel Mundo ◽  
David Julian McClements

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 295
Author(s):  
Asma Yakdhane ◽  
Sabrine Labidi ◽  
Donia Chaabane ◽  
Anita Tolnay ◽  
Arijit Nath ◽  
...  

Microencapsulation is a well-known technology for the lipid delivery system. It prevents the oxidation of fatty acids and maintains the quality of lipid after extraction from oil seed and processing. In flaxseed oil, the amount of ω-3 and ω-6 polyunsaturated fatty acids are 39.90–60.42% and 12.25–17.44%, respectively. A comprehensive review article on the microencapsulation of flaxseed oil has not been published yet. Realizing the great advantages of flaxseed oil, information about different technologies related to the microencapsulation of flaxseed oil and their characteristics are discussed in a comprehensive way, in this review article. To prepare the microcapsule of flaxseed oil, an emulsion of oil-water is performed along with a wall material (matrix), followed by drying with a spray-dryer or freeze-dryer. Different matrices, such as plant and animal-based proteins, maltodextrin, gum Arabic, and modified starch are used for the encapsulation of flaxseed oil. In some cases, emulsifiers, such as Tween 80 and soya lecithin are used to prepare flaxseed oil microcapsules. Physico-chemical and bio-chemical characteristics of flaxseed oil microcapsules depend on process parameters, ratio of oil and matrix, and characteristics of the matrix. As an example, the size of the microcapsule, prepared with spray-drying and freeze-drying ranges between 10–400 and 20–5000 μm, respectively. It may be considered that the comprehensive information on the encapsulation of flaxseed oil will boost the development of functional foods and biopharmaceuticals.


Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 189 ◽  
Author(s):  
Keren Toledo-Madrid ◽  
Tzayhrí Gallardo-Velázquez ◽  
Guillermo Osorio-Revilla

The aim of this study was to microencapsulate an optimized extract of purple cactus pear fruit (Opuntia ficus indica), rich in phenolic compounds (PC), betacyanins (BC), and betaxanthins (BX), with antioxidant capacity (AC), by two methodologies: combined water-in-oil-in water double emulsions-spray drying (W/O/W-SP) and conventional spray drying, studying the effect of spray drying (SP) on PC and AC. Optimal extraction conditions for bioactive compounds were: 52 °C, for 30 min, using aqueous ethanol (40%) as the solvent, with a 0.85 desirability function, obtaining 17.39 ± 0.11 mg GAE/gdw (gallic acid equivalents per gram of dry weight) for PC, 0.35 mg BE/gdw (betanin equivalents per gram of dry weight) for BC, and 0.26 mg IE/gdw (indicaxanthin equivalents per gram of dry weight) for BX. The best combination of temperatures for conventional SP and W/O/W-SP was 160–80 °C obtaining the highest retention and encapsulation efficiencies for PC. For conventional SP, results were: 107% and 100% PC and AC retention efficiencies (RE-PC and RE-AC), respectively, with 97% of PC encapsulation efficiency (EE-PC), meanwhile for the W/O/W-SP results were: 78% and 103% RE-PC and RE-AC, respectively, with 70% of EE-PC. Microcapsules obtained with W/O/W-SP maintained their structure and integrity and showed a considerable reduction in globule size in the reconstituted W/O/W emulsions due to the spray drying stress. Despite having lower EE-PC than conventional SP, spray dried W/O/W emulsions seems to be a promising controlled-delivery vehicle for antioxidant compounds.


2006 ◽  
Vol 3 (1) ◽  
pp. 8-21
Author(s):  
Mahdi Jufri ◽  
◽  
Effionora Anwar ◽  
Putri Margaining Utami

Various solubilization techniques have been developed to enhance the bioavailability of hydrophobic drugs. One of the solubilization techniques is preparation of microemulsion. Microemulsion is a potential carrier in drug delivery system because it has many advantageous characteristics. In this research, hydrophobic drug was made in a dosage form of oil in water (O/W) microemulsion using ketoprofen as a model and investigated the influence of adding starch hydrolisates with dextrose equivalent (DE) 35-40 in variety concentrations (0,0%; 1,5%; 2,0%; 2,5%) to the stability of this microemulsion system. This microemulsion consisted of isopropyl miritate as oil phase, tween 80 and lechitin as surfactants, ethanol as cosurfactant, propylene glycol as cosolvent, starch hydrolisates DE 35–40 as stabilizer, and water as external phase. The evaluation was stability test both phisically and chemically. The result showed that the stability of microemulsion system increased significantly by adding starch hydrolisates DE 35-40 at 2,5%.


Sign in / Sign up

Export Citation Format

Share Document