scholarly journals Application of Deep Eutectic Solvents in the Synthesis of Substituted 2-Mercaptoquinazolin-4(3H)-Ones: A Comparison of Selected Green Chemistry Methods

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 558
Author(s):  
Mario Komar ◽  
Tatjana Gazivoda Kraljević ◽  
Igor Jerković ◽  
Maja Molnar

In this study, deep eutectic solvents (DESs) were used as green and eco-friendly media for the synthesis of substituted 2-mercaptoquinazolin-4(3H)-ones from different anthranilic acids and aliphatic or aromatic isothiocyanates. A model reaction on anthranilic acid and phenyl isothiocyanate was performed in 20 choline chloride-based DESs at 80 °C to find the best solvent. Based on the product yield, choline chloride:urea (1:2) DES was found to be the most effective, while DESs acted both as solvents and catalysts. Desired compounds were prepared with moderate to good yields using stirring, microwave-assisted, and ultrasound-assisted synthesis. Significantly, higher yields were obtained with mixing and ultrasonication (16–76%), while microwave-induced synthesis showed lower effectiveness (13–49%). The specific contribution of this research is the use of DESs in combination with the above-mentioned green techniques for the synthesis of a wide range of derivatives. The structures of the synthesized compounds were confirmed by 1H and 13C NMR spectroscopy.

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3816
Author(s):  
Taleb H. Ibrahim ◽  
Muhammad A. Sabri ◽  
Nabil Abdel Jabbar ◽  
Paul Nancarrow ◽  
Farouq S. Mjalli ◽  
...  

The thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m−1·K−1 to 0.250 W·m−1·K−1. Various empirical and thermodynamic correlations present in literature, including the group contribution method and mixing correlations, were used to model the thermal conductivities of these DES at different temperatures. The predictions of these correlations were compared and consolidated with the reported experimental values. In addition, the thermal conductivities of DES mixtures with water over a wide range of compositions at 298 K and atmospheric pressure were measured. The standard uncertainty in thermal conductivity was estimated to be less than ± 0.001 W·m−1·K−1 and ± 0.05 K in temperature. The results indicated that DES have significant potential for use as heat transfer fluids.


2020 ◽  
Vol 92 (4) ◽  
pp. 511-517
Author(s):  
Mario Komar ◽  
Maja Molnar ◽  
Anastazija Konjarević

In this study, two fast and efficient protocols for green synthesis of 3-substituted quinazolinones were perfomed. A synthesis of 2-methyl-3-substituted quinazolinones was performed in natural deep eutectic solvents, while 3-aryl quinazolinones were obtained by using microwave assisted synthesis. Benzoxazinone, which was used as an intermediate in the synthesis of 2-methyl-3-substituted quinazolinones, was prepared conventionally from anthranilic acid and acetic anhydride. In order to find the most appropriate synthetic path, twenty natural deep eutectic solvents were applied as a solvent in these syntheses. Choline chloride:urea (1 : 2) was found to be the most efficient solvent and was further used in the synthesis of 2-methyl quinazolinone derivatives (2–12). 3-Aryl quinazolinones (13–17), on the other hand, were synthesized in one-pot microwave-assisted reaction of anthranilic acid, different amines and trimethyl orthoformate. All compounds were synthesized in good to excellent yields, characterized by LC-MS/MS spectrometry and 1H- and 13C-NMR spectroscopy.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 981 ◽  
Author(s):  
Ahmet Ozan Basar ◽  
Cristina Prieto ◽  
Erwann Durand ◽  
Pierre Villeneuve ◽  
Hilal Turkoglu Sasmazel ◽  
...  

The encapsulation β-carotene in whey protein concentrate (WPC) capsules through the emulsion electrospraying technique was studied, using deep eutectic solvents (DES) as solvents. These novel solvents are characterized by negligible volatility, a liquid state far below 0 °C, a broad range of polarity, high solubilization power strength for a wide range of compounds, especially poorly water-soluble compounds, high extraction ability, and high stabilization ability for some natural products. Four DES formulations were used, based on mixtures of choline chloride with water, propanediol, glucose, glycerol, or butanediol. β-Carotene was successfully encapsulated in a solubilized form within WPC capsules; as a DES formulation with choline chloride and butanediol, the formulation produced capsules with the highest carotenoid loading capacity. SEM micrographs demonstrated that round and smooth capsules with sizes around 2 µm were obtained. ATR-FTIR results showed the presence of DES in the WPC capsules, which indirectly anticipated the presence of β-carotene in the WPC capsules. Stability against photo-oxidation studies confirmed the expected presence of the bioactive and revealed that solubilized β-carotene loaded WPC capsules presented excellent photo-oxidation stability compared with free β-carotene. The capsules developed here clearly show the significant potential of the combination of DES and electrospraying for the encapsulation and stabilization of highly insoluble bioactive compounds.


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 416 ◽  
Author(s):  
Amal Elgharbawy ◽  
Adeeb Hayyan ◽  
Maan Hayyan ◽  
Mohamed Mirghani ◽  
Hamzah Salleh ◽  
...  

Background: Natural deep eutectic solvents (NADESs) can be used for extracting a wide range of biomaterials, such as pectin. This study introduces a new generation of natural solvents for pectin extraction which could replace the conventional solvents in the food industry. Methods: In this study, NADESs were used for pectin extraction from pomelo (Citrus grandis (L.) Osbeck) peels using a sonoreactor. Definitive screening design (DSD) was used to screen the influence of time, temperature, solid/liquid ratio, and NADES/water ratio on the pectin yield and degree of esterification (DE). Results: The primary screening revealed that the best choices for the extraction were choline chloride–malonic acid (ChCl-Mal) and choline chloride–glucose–water (ChCl:Glc:W). Both co-solvents yielded 94% pectin and 52% DE after optimization at 80 °C, with 60 min of sonication, pH < 3.0, and a NADES-to-water ratio of 1:4.5 (v/v). Morphological screening showed a smooth and compact surface of the pectin from ChCl-Mal where glucose-based pectin had a rough surface and lower DE. Conclusions: NADESs proved to be promising co-solvents for pectin extraction with a high degree of esterification (>55%).


2019 ◽  
Vol 116 ◽  
pp. 00078 ◽  
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś ◽  
Jacek Gębicki ◽  
Andrzej Rogala

Biogas from landfills and wastewater treatment facilities typically contain a wide range of volatile organic compounds (VOCs), that can cause severe operational problems when biogas is used as fuel. Among the contaminants commonly occur aromatic compounds, i.e. benzene, ethylbenzene, toluene and xylenes (BTEX). In order to remove BTEX from biogas, different processes can be used. A promising process for VOCs removal is their absorption in deep eutectic solvents (DES). In this work, three DES: ([ChCl] U TEG [choline chloride]:urea:tetraethylene glycol (1:2:2), [ChCl] U [choline chloride]:urea (1:2), [ChCl] DEG [choline chloride]:diethylene glycol (1:2)) and water were tested to toluene absorption in concentration of 2000 ppm v/v in nitrogen stream. The results demonstrated the high absorption capacity of toluene using DES based on glycols.


2020 ◽  
Vol 17 (2) ◽  
pp. 98-108 ◽  
Author(s):  
Melita Lončarić ◽  
Martina Sušjenka ◽  
Maja Molnar

Aim and Objective: In order to preserve the environment from harmful organic solvents, a synthesis of coumarin derivatives was performed in deep eutectic solvents, which are considered as “green” due to their characteristics. Materials and Methods: Choline chloride based deep eutectic solvents (DESs) were employed, both as solvents and as catalysts, in the synthesis of coumarin derivatives via Knoevenagel condensation. In order to find the best DES for coumarin synthesis, 20 DESs were tested for the reaction of salicylaldehyde and dimethyl malonate at 80 °C. Results: Among the twenty tested deep eutectic solvents only five were adequate for this kind of synthesis. The best DES for this reaction was found to be the one composed of choline chloride:urea (1:2). Most coumarin compounds were obtained in good to excellent yield. Compounds 1g, 2g and 2p should be pointed out due to their yields of 85, 88 and 98 %, respectively. 3-Acetylcoumarins 5a, 5c, 5d, 5e, 5f and 5g were synthesized under ultrasound irradiation and were also obtained in excellent yields of 90, 95, 98, 93, 94 and 85 %, respectively. Conclusion: Series of coumarin derivatives were successfully synthesized, either in choline chloide:urea DES at 80 °C or in ultrasound-assisted reaction, from different salicylaldehydes and active methylene compounds. These “green” methods were found to be very effective in Knoevenagel condensation, while DES was recycled for several cycles without any significant influence on the product yield.


2018 ◽  
Vol 15 (7) ◽  
pp. 989-994 ◽  
Author(s):  
Ling Li ◽  
Bo Su ◽  
Yuxiu Liu ◽  
Qingmin Wang

Aim and Objective: During the investigation of sodium nitrite-catalyzed oxidative coupling reaction of aryls, an unprecedented C(sp2)-H and C(sp3)-H coupling of substituted 2-aryl acetonitrile was found. Materials and Methods: The structure of the coupled product was confirmed by 1H and 13C NMR spectroscopy and high-resolution mass spectrometry (HRMS), and comparison of its derivatives with known compounds. The effects of methoxy group in the benzene ring on the reaction were evaluated. Results: The optimized reaction conditions are summarized as follows: CF3SO3H/substrate = 1.5 equiv., NaNO2/substrate = 0.3 equiv., CH3CN as solvent. 2-(4-Methoxyphenyl)acetonitrile and 2-(3,4,5- trimethoxyphenyl)acetonitrile could also generate C(sp2)-H and C(sp3)-H coupling. The coupling reaction occurred as a typical radial mechanism. Conclusion: An unprecedented cyano-induced, NaNO2-catalyzed oxidative C(sp3)-H and C(sp2)-H coupling was reported. The reaction proceeded under very mild conditions, using O2 in the air as terminal oxidant. The unique oxidative manner might provide more inspiration for the development of intriguing oxidative coupling reactions.


Molbank ◽  
10.3390/m1140 ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. M1140
Author(s):  
Jack Bennett ◽  
Paul Murphy

(2S,3R,6R)-2-[(R)-1-Hydroxyallyl]-4,4-dimethoxy-6-methyltetrahydro-2H-pyran-3-ol was isolated in 18% after treating the glucose derived (5R,6S,7R)-5,6,7-tris[(triethylsilyl)oxy]nona-1,8-dien-4-one with (1S)-(+)-10-camphorsulfonic acid (CSA). The one-pot formation of the title compound involved triethylsilyl (TES) removal, alkene isomerization, intramolecular conjugate addition and ketal formation. The compound was characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry and IR spectroscopy. NMR spectroscopy was used to establish the product structure, including the conformation of its tetrahydropyran ring.


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


Sign in / Sign up

Export Citation Format

Share Document