scholarly journals Functionalized Protein Nanotubes Based on the Bacteriophage vB_KleM-RaK2 Tail Sheath Protein

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3031
Author(s):  
Greta Labutytė ◽  
Simona Povilonienė ◽  
Eugenijus Šimoliūnas ◽  
Dovydas Gabrielaitis ◽  
Martynas Skapas ◽  
...  

We report on the construction of functionalized nanotubes based on tail sheath protein 041 from vB_KleM-RaK2 bacteriophage. The truncated 041 protein (041Δ200) was fused with fluorescent proteins GFP and mCherry or amidohydrolase YqfB. The generated chimeric proteins were successfully synthesized in E. coli BL21 (DE3) cells and self-assembled into tubular structures. We detected the fluorescence of the structures, which was confirmed by stimulated emission depletion microscopy. When 041Δ200GFP and 041Δ200mCherry were coexpressed in E. coli BL21 (DE3) cells, the formed nanotubes generated Förster resonance energy transfer, indicating that both fluorescent proteins assemble into a single nanotube. Chimeric 041Δ200YqfB nanotubes possessed an enzymatic activity, which was confirmed by hydrolysis of N4-acetyl-2′-deoxycytidine. The enzymatic properties of 041Δ200YqfB were similar to those of a free wild-type YqfB. Hence, we conclude that 041-based chimeric nanotubes have the potential for the development of delivery vehicles and targeted imaging and are applicable as scaffolds for biocatalysts.

2004 ◽  
Vol 384 (3) ◽  
pp. 577-584 ◽  
Author(s):  
Abdellah ALLALI-HASSANI ◽  
Tracey L. CAMPBELL ◽  
Andy HO ◽  
Jeffrey W. SCHERTZER ◽  
Eric D. BROWN

In the study described here, we have taken steps to characterize the YjeE protein, an Escherichia coli protein of unknown function that is essential for bacterial viability. YjeE represents a protein family whose members are broadly conserved in bacteria, absent from eukaryotes and contain both Walker A and B motifs, characteristic of P-loop ATPases. We have revisited the dispensability of the yjeE gene in E. coli and describe efforts to probe the function of the YjeE protein with in vitro biochemistry. We have looked critically for ATPase activity in the recombinant E. coli protein and have made vigilant use of site-directed variants in the Walker A [K41A (Lys41→Ala) and T42A] and putative Walker B (D80Q) motifs. We noted that any hydrolysis of ATP by the wild-type E. coli protein might be attributed to background ATPase, since it was not appreciably different from that of the variants. To overcome potential contaminants, we turned to crystalline pure YjeE protein from Haemophilus influenzae that was found to hydrolyse ATP at a slow rate (kcat=1 h−1). We have also shown high-affinity binding to YjeE by ADP using equilibrium dialysis (Kd=32 μM) and by fluorescence resonance energy transfer from a conserved tryptophan in YjeE to a fluorescent derivative of ADP, 2′-/3′-O-(N-methylanthraniloyl)adenosine 5′-O-diphosphate (Kd=8 μM). Walker motif variants were notably impaired for ADP binding and T42A and D80Q mutations in yjeE were incapable of complementing the yjeE deletion strain.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3105 ◽  
Author(s):  
Henning Höfig ◽  
Michele Cerminara ◽  
Ilona Ritter ◽  
Antonie Schöne ◽  
Martina Pohl ◽  
...  

Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration. In this study we compare a FP-equipped and a dye-labeled version of the glucose/galactose binding protein MglB at the single-molecule level. The comparison demonstrates that changes in the FRET signal upon glucose binding are more pronounced for the FP-equipped sensor construct as compared to the dye-labeled analog. Moreover, the FP-equipped sensor showed a strong increase of the FRET signal under crowding conditions whereas the dye-labeled sensor was not influenced by crowding. The choice of a labeling scheme should therefore be made depending on the application of a FRET-based sensor.


2021 ◽  
Vol 118 (25) ◽  
pp. e2101004118
Author(s):  
Julianna R. Cresti ◽  
Abramo J. Manfredonia ◽  
Christopher E. Bragança ◽  
Joseph A. Boscia ◽  
Christina M. Hurley ◽  
...  

The 26S proteasome is the macromolecular machine responsible for the bulk of protein degradation in eukaryotic cells. As it degrades a ubiquitinated protein, the proteasome transitions from a substrate-accepting conformation (s1) to a set of substrate-processing conformations (s3 like), each stabilized by different intramolecular contacts. Tools to study these conformational changes remain limited, and although several interactions have been proposed to be important for stabilizing the proteasome’s various conformations, it has been difficult to test these directly under equilibrium conditions. Here, we describe a conformationally sensitive Förster resonance energy transfer assay, in which fluorescent proteins are fused to Sem1 and Rpn6, which are nearer each other in substrate-processing conformations than in the substrate-accepting conformation. Using this assay, we find that two sets of interactions, one involving Rpn5 and another involving Rpn2, are both important for stabilizing substrate-processing conformations. Mutations that disrupt these interactions both destabilize substrate-processing conformations relative to the substrate-accepting conformation and diminish the proteasome’s ability to successfully unfold and degrade hard-to-unfold substrates, providing a link between the proteasome’s conformational state and its unfolding ability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Kanadome ◽  
Natsumi Hoshino ◽  
Takeharu Nagai ◽  
Tomoki Matsuda ◽  
Takeshi Yagi

AbstractClustered protocadherins (Pcdhs), which are cell adhesion molecules, play a fundamental role in self-recognition and non-self-discrimination by conferring diversity on the cell surface. Although systematic cell-based aggregation assays provide information regarding the binding properties of Pcdhs, direct visualization of Pcdh trans interactions across cells remains challenging. Here, we present Förster resonance energy transfer (FRET)-based indicators for directly visualizing Pcdh trans interactions. We developed the indicators by individually inserting FRET donor and acceptor fluorescent proteins (FPs) into the ectodomain of Pcdh molecules. They enabled successful visualization of specific trans interactions of Pcdh and revealed that the Pcdh trans interaction is highly sensitive to changes in extracellular Ca2+ levels. We expect that FRET-based indicators for visualizing Pcdh trans interactions will provide a new approach for investigating the roles of Pcdh in self-recognition and non-self-discrimination processes.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 122 ◽  
Author(s):  
Skruzny ◽  
Pohl ◽  
Abella

Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.


2020 ◽  
Vol 21 (14) ◽  
pp. 5004
Author(s):  
Ekaterina O. Serebrovskaya ◽  
Nadezda M. Podvalnaya ◽  
Varvara V. Dudenkova ◽  
Anna S. Efremova ◽  
Nadya G. Gurskaya ◽  
...  

Poly-(ADP-ribosyl)-ation (PARylation) is a reversible post-translational modification of proteins and DNA that plays an important role in various cellular processes such as DNA damage response, replication, transcription, and cell death. Here we designed a fully genetically encoded fluorescent sensor for poly-(ADP-ribose) (PAR) based on Förster resonance energy transfer (FRET). The WWE domain, which recognizes iso-ADP-ribose internal PAR-specific structural unit, was used as a PAR-targeting module. The sensor consisted of cyan Turquoise2 and yellow Venus fluorescent proteins, each in fusion with the WWE domain of RNF146 E3 ubiquitin ligase protein. This bipartite sensor named sPARroW (sensor for PAR relying on WWE) enabled monitoring of PAR accumulation and depletion in live mammalian cells in response to different stimuli, namely hydrogen peroxide treatment, UV irradiation and hyperthermia.


2019 ◽  
Vol 20 (16) ◽  
pp. 3859 ◽  
Author(s):  
Michael Winkler ◽  
Florian Wrensch ◽  
Pascale Bosch ◽  
Maike Knoth ◽  
Michael Schindler ◽  
...  

The interferon-induced transmembrane proteins 1–3 (IFITM1–3) inhibit host cell entry of several viruses. However, it is incompletely understood how IFITM1–3 exert antiviral activity. Two phenylalanine residues, F75 and F78, within the intramembrane domain 1 (IM1) were previously shown to be required for IFITM3/IFITM3 interactions and for inhibition of viral entry, suggesting that IFITM/IFITM interactions might be pivotal to antiviral activity. Here, we employed a fluorescence resonance energy transfer (FRET) assay to analyze IFITM/IFITM interactions. For assay calibration, we equipped two cytosolic, non-interacting proteins, super yellow fluorescent protein (SYFP) and super cyan fluorescent protein (SCFP), with signals that target proteins to membrane rafts and also analyzed a SCFP-SYFP fusion protein. This strategy allowed us to discriminate background signals resulting from colocalization of proteins at membrane subdomains from signals elicited by protein–protein interactions. Coexpression of IFITM1–3 and IFITM5 fused to fluorescent proteins elicited strong FRET signals, and mutation of F75 and F78 in IFITM3 (mutant IFITM3-FF) abrogated antiviral activity, as expected, but did not alter cellular localization and FRET signals. Moreover, IFITM3-FF co-immunoprecipitated efficiently with wild type (wt) IFITM3, lending further support to the finding that lack of antiviral activity of IFITM3-FF was not due to altered membrane targeting or abrogated IFITM3-IFITM3 interactions. Collectively, we report an assay that allows quantifying IFITM/IFITM interactions. Moreover, we confirm residues F75 and F78 as critical for antiviral activity but also show that these residues are dispensable for IFITM3 membrane localization and IFITM3/IFITM3 interactions.


2019 ◽  
Vol 82 (3) ◽  
pp. 507-512
Author(s):  
JOSEPH M. BOSILEVAC ◽  
HARI P. DWIVEDI ◽  
PATRICE CHABLAIN ◽  
MICHAEL ULLERY ◽  
JOSEPH S. BAILEY ◽  
...  

ABSTRACT Contaminated beef and beef products remain a frequent vehicle for the transmission of Escherichia coli O157:H7. The current U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) regulatory testing for E. coli O157:H7 uses the method described in the USDA-FSIS Microbiology Laboratory Guidebook (MLG), chapter 5. At times, described presumptive test results are nonconfirmable, suggesting that recent PCR technological advancements and presumed enhanced sensitivity and specificity may offer beneficial changes. Here, we have evaluated the precision and sensitivity of a fluorescence resonance energy transfer–based real-time PCR assay called ECO for the detection of E. coli O157:H7. ECO detects the gene target specific to both E. coli O157:H7 and E. coli O157:non-H7 but distinguishes the two by using a melt curve analysis. A total of 3,113 O157:H7 and O157:non-H7 isolates were used to define this melting temperature–based criteria. The simulated comparative performance evaluation in the spiked beef samples indicated detection of 3 of 3 samples by ECO at <3.3 log CFU/mL, whereas MLG only detected 1 of 3 (<3.3 log CFU/mL). Using modified tryptic soy broth–enriched natural beef and veal product samples (n = 452), the comparative sensitivity, specificity, false-positive rate, and false-negative rate against culture between MLG and ECO were 75 versus 92%, 91 versus 99%, 8.9 versus 0.77%, and 25 versus 8.3%, respectively. Positive predictive value, negative predictive value, and the overall accuracy were found to be 56 versus 94%, 96 versus 98%, and 88 versus 98%, for MLG and ECO, respectively. These data demonstrate that the ECO assay is comparable to MLG detection of E. coli O157:H7 and offers improved sensitivity.


Sign in / Sign up

Export Citation Format

Share Document