scholarly journals Thin Film and Nanostructured Pd-Based Materials for Optical H2 Sensors: A Review

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3100
Author(s):  
Andreas Sousanis ◽  
George Biskos

In this review paper, we provide an overview of state-of-the-art Pd-based materials for optical H2 sensors. The first part of the manuscript introduces the operating principles, providing background information on the thermodynamics and the primary mechanisms of optical detection. Optical H2 sensors using thin films (i.e., films without any nanostructuring) are discussed first, followed by those employing nanostructured materials based on aggregated or isolated nanoparticles (ANPs and INPs, respectively), as well as complex nanostructured (CN) architectures. The different material types are discussed on the basis of the properties they can attribute to the resulting sensors, including their limit of detection, sensitivity, and response time. Limitations induced by cracking and the hysteresis effect, which reduce the repeatability and reliability of the sensors, as well as by CO poisoning that deteriorates their performance in the long run, are also discussed together with an overview of manufacturing approaches (e.g., tailoring the composition and/or applying functionalizing coatings) for addressing these issues.

Author(s):  
Bryan R. Loyola ◽  
Valeria La Saponara ◽  
Kenneth J. Loh

The trend towards higher reliance on fiber-reinforced composites for structural components has led to the need to rethink current nondestructive evaluation (NDE) strategies. In principle, embeddable sensor schemes are desired for green-light/red-light structural health monitoring systems that do not negatively affect the properties and performance of the host structure. However, there are still numerous challenges that need to be overcome before these embedded sensing technologies can be realized for real-world structural systems. For example, some of these issues and challenges include the damage detection sensitivity/threshold, reliability of the system, transportability of the system to multiple configurations and different types of structural components, and signal processing/interpretation. The objective of this study is to develop a novel, embedded sensing system that can accurately quantify damage to composites without interfering with structural performance and functionality. In particular, this study will utilize multi-walled carbon nanotube (MWNT)-polyelectrolyte (PE) thin films deposited on a glass fiber substrate for in situ composite structural monitoring. A layer-by-layer (LbL) film fabrication methodology is employed for depositing piezoresistive nanocomposites directly onto glass fiber fabrics, and the resulting film exhibits excellent strain sensing performance, homogeneity, and exhibits no phase segregation. Specifically, the LbL fabrication process will employ polycationic poly(vinyl alcohol) (PVA) and polyanionic poly(sodium 4-styrene sulfonate) (PSS) doped with MWNTs for fabricating the electrically-conductive and piezoresistive thin films. Upon film deposition, the glass fiber substrates are infused with an epoxy matrix via wet-layup to fabricate self-sensing glass fiber-reinforced polymer (GFRP) composite specimens for testing. A frequency-domain approach, based on electrical impedance spectroscopy, is used to characterize the electromechanical response of the GFRP-MWNT-based thin film samples when subjected to complex uni-axial tensile load patterns. A resistor connected to a parallel resistor-capacitor circuit model is proposed for fitting experimental impedance spectroscopic measurements. It has been found that the series resistor models the bulk thin film piezoresistive performance accurately. In addition, these impedance measurements shed light on the glass fiber-thin film interaction electromechanical behavior. Bi-functional strain sensitivity is observed for all GFRP specimens, and the transition point of bilinear strain sensitivity is utilized as a possible metric for GFRP damage detection.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
S. P. Sapers ◽  
R. Clark ◽  
P. Somerville

OCLI is a leading manufacturer of thin films for optical and thermal control applications. The determination of thin film and substrate topography can be a powerful way to obtain information for deposition process design and control, and about the final thin film device properties. At OCLI we use a scanning probe microscope (SPM) in the analytical lab to obtain qualitative and quantitative data about thin film and substrate surfaces for applications in production and research and development. This manufacturing environment requires a rapid response, and a large degree of flexibility, which poses special challenges for this emerging technology. The types of information the SPM provides can be broken into three categories:(1)Imaging of surface topography for visualization purposes, especially for samples that are not SEM compatible due to size or material constraints;(2)Examination of sample surface features to make physical measurements such as surface roughness, lateral feature spacing, grain size, and surface area;(3)Determination of physical properties such as surface compliance, i.e. “hardness”, surface frictional forces, surface electrical properties.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


2020 ◽  
Vol 191 (01) ◽  
pp. 30-51
Author(s):  
Konstantin V. Larionov ◽  
Pavel B. Sorokin
Keyword(s):  

1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Sign in / Sign up

Export Citation Format

Share Document