scholarly journals TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1049 ◽  
Author(s):  
Sheng-Gui Chen ◽  
Junzhong Yang ◽  
Yong-Guang Jia ◽  
Bingheng Lu ◽  
Li Ren

The future of manufacturing applications in three-dimensional (3D) printing depends on the improvement and the development of materials suitable for 3D printing technology. This study aims to develop an applicable and convenient protocol for light-curing resin used in 3D industry, which could enhance antibacterial and mechanical properties of polymethyl methacrylate (PMMA) resin through the combination of nano-fillers of surface modified titanium dioxide (TiO2) and micro-fillers of polyetheretherketone (PEEK). PMMA-based composite resins with various additions of TiO2 and PEEK were prepared and submitted to characterizations including mechanical properties, distribution of the fillers (TiO2 or/and PEEK) on the fractured surface, cytotoxicity, antibacterial activity, and blood compatibility assessment. These results indicated that the reinforced composite resins of PMMA (TiO2-1%-PEEK-1%) possessed the most optimized properties compared to the other groups. In addition, we found the addition of 1% of TiO2 would be an effective amount to enhance both mechanical and antibacterial properties for PMMA composite resin. Furthermore, the model printed by PMMA (TiO2-1%-PEEK-1%) composite resin showed a smooth surface and a precise resolution, indicating this functional dental restoration material would be a suitable light-curing resin in 3D industry.

2020 ◽  
Vol 5 (2) ◽  
pp. 172
Author(s):  
Dewi Puspitasari ◽  
Maharani Laillyza Apriasari ◽  
Dewi Rahayu ◽  
Priyawan Rachmadi

ABSTRACTBackgrounds: The use of mouthwash daily may influence the mechanical properties of bioactive composite resin as a dental restoration, one of the mechanical properties is surface hardness. Herbal mouthwash can be used to minimize the side effect of mouthwash that contain alcohol. Mauli banana stem and basil leaf extracts can be produced into herbal mouthwash. Methods: Thirty specimens (10mm diameter x 2mm thick; n=5/group) bioactive composite resins were immersed in a mixed solution of Mauli banana and basil leaf extracts with concentration of 25%, 50%, 75 %%, 100%, the control group of chlorhexidine gluconate 0.2% and aquadest for 7 days in 37oC. Measurement of the surface hardness was using the Vickers Microhardness Tester with 100 gf load for 15 seconds. Results: One Way ANOVA and Post Hoc Bonferroni exhibited the significant differences (p <0.05) in hardness values between the specimens that immersed in the mixed solution Mauli banana and Basil leaf extracts, which in the concentration of 100% (4,49 ± 4,61 VHN) compared with 25% (38,20 ± 2,58 VHN), 50% (41,40 ± 3,84 VHN) and 75% concentration (40,40 ± 3,55 VHN). There was no siginificant difference (p >0.05) between specimens immersed in CHX, aquadest and the mixed solution of mauli banana and basil leaf extracts in all concentration. Conclusion: There is no change in bioactive composite resin surface hardness after immersed in the mixed solution of Mauli Banana stem (Musa acuminata) and Basil leaf (Ocimum basilicum) extracts.Keywords: Basil leaf extract, Bioactive resin, Mauli Banana stem extract, Surface hardness


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2444 ◽  
Author(s):  
Shenggui Chen ◽  
Junzhong Yang ◽  
Yong-Guang Jia ◽  
Bingheng Lu ◽  
Li Ren

With the rapid application of light-curing 3D printing technology, the demand for high-performance polymer resins is increasing. Existing light-curable resins often have drawbacks limiting their clinical applications. This study aims to develop a new type of polymethyl methacrylate (PMMA) composite resins with enhanced mechanical properties, high antibacterial activities and excellent biocompatibilities. A series of reinforced composite resins were prepared by mechanically mixing PMMA with modified cellulose nanocrystals (CNCs), which were coated with polydopamine and decorated by silver nanoparticles (AgNPs) via Tollen reaction. The morphology of CNCs-Ag was observed by transmission electron microscopy and the formation of AgNPs on CNCs was confirmed by X-Ray photoelectron spectroscopy analyses. Functional groups in PMMA-CNCs-Ag composites were verified by Fourier Transform infrared spectroscopy (FTIR) spectroscopy. The mechanical assessment and scanning electron microscopy analysis suggested that the evenly distributed CNCs-AgNPs composite effectively improve mechanical properties of PMMA resin. Cytotoxicity assay and antibacterial activity tests indicated excellent biocompatibility and high antibacterial activities. Furthermore, PMMA with CNCs-AgNPs of 0.1 wt.% (PMMA-CNCs-AgNPs-0.1) possessed the most desirable mechanical properties owing to the homogeneous distribution of AgNPs throughout the resin matrix. This specific composite resin can be used as a functional dental restoration material with potential of other medical applications.


2013 ◽  
Vol 1 (4) ◽  
pp. 281
Author(s):  
Bárbara Malta Neves Oliveira ◽  
Renata Pereira ◽  
Maria Do Carmo Aguiar Jordão Mainardi ◽  
Gláucia Maria Bovi Ambrosano ◽  
Débora Alves Nunes Lima ◽  
...  

This in vitro work had as aim evaluate the effect of photoactivation mode and the distance of light-curing unit (LCU) in microhardness Knoop (KHN) and the diametrical tensile strength (DTS) of methacrylate and silorane-based resins. Filtek Z250 (methacrylate-based resin) and Filtek P90 (silorane-based resin), both from 3M Espe, were selected for this work. The photoactivation were performed by one of the following modes: Valo (Ultradent) at 1000 mW/cm2 X 18 s (S); 1400 mW/cm2 X 12 s (HP); 3200 mW/cm2 X 6 s (PE); and XL 3000 (3M Espe) at 450 mW/cm2 X 40 s (XL). Resin composite were inserted in one increment into a bipartide Teflon matrix (5mm X 2mm) and photoactivated at 0mm, 3 or 6mm from the increment surface, according to the experimental groups. After the confection, the specimens (n=5) were submitted to KHN on the top (T) and on the bottom (B), and to DTS. Data were analyzed through ANOVA/Tukey tests (α=5%). It was observed that Filtek Z250 presented values of KHN equal or higher than Filtek P90. The surface T presented higher values of KHN than B. For both composite resins, the values of KHN on the surface B were lower, as higher the distance of LCU. In relation to DTS, the higher values were observed in Filtek Z250. Silorane base composite resin presented lower mechanical properties when compared to the methacrylate base resin. The distance of LCU is able to influence the microhardness of bottom surface. 


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2950
Author(s):  
Hongwei Song ◽  
Xinle Li

The most active research area is nanotechnology in cementitious composites, which has a wide range of applications and has achieved popularity over the last three decades. Nanoparticles (NPs) have emerged as possible materials to be used in the field of civil engineering. Previous research has concentrated on evaluating the effect of different NPs in cementitious materials to alter material characteristics. In order to provide a broad understanding of how nanomaterials (NMs) can be used, this paper critically evaluates previous research on the influence of rheology, mechanical properties, durability, 3D printing, and microstructural performance on cementitious materials. The flow properties of fresh cementitious composites can be measured using rheology and slump. Mechanical properties such as compressive, flexural, and split tensile strength reveal hardened properties. The necessary tests for determining a NM’s durability in concrete are shrinkage, pore structure and porosity, and permeability. The advent of modern 3D printing technologies is suitable for structural printing, such as contour crafting and binder jetting. Three-dimensional (3D) printing has opened up new avenues for the building and construction industry to become more digital. Regardless of the material science, a range of problems must be tackled, including developing smart cementitious composites suitable for 3D structural printing. According to the scanning electron microscopy results, the addition of NMs to cementitious materials results in a denser and improved microstructure with more hydration products. This paper provides valuable information and details about the rheology, mechanical properties, durability, 3D printing, and microstructural performance of cementitious materials with NMs and encourages further research.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4164
Author(s):  
Elizabeth Diederichs ◽  
Maisyn Picard ◽  
Boon Peng Chang ◽  
Manjusri Misra ◽  
Amar Mohanty

Three-dimensional (3D) printing manufactures intricate computer aided designs without time and resource spent for mold creation. The rapid growth of this industry has led to its extensive use in the automotive, biomedical, and electrical industries. In this work, biobased poly(trimethylene terephthalate) (PTT) blends were combined with pyrolyzed biomass to create sustainable and novel printing materials. The Miscanthus biocarbon (BC), generated from pyrolysis at 650 °C, was combined with an optimized PTT blend at 5 and 10 wt % to generate filaments for extrusion 3D printing. Samples were printed and analyzed according to their thermal, mechanical, and morphological properties. Although there were no significant differences seen in the mechanical properties between the two BC composites, the optimal quantity of BC was 5 wt % based upon dimensional stability, ease of printing, and surface finish. These printable materials show great promise for implementation into customizable, non-structural components in the electrical and automotive industries.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1708
Author(s):  
Wenqiang Hua ◽  
Qilang Lin ◽  
Bo Qu ◽  
Yanyu Zheng ◽  
Xiaoying Liu ◽  
...  

Photosensitive resins used in three-dimensional (3D) printing are characterized by high forming precision and fast processing speed; however, they often possess poor mechanical properties and heat resistance. In this study, we report a photocurable bismaleimide ink with excellent comprehensive performance for stereolithography (SLA) 3D printing. First, the main chain of bismaleimide with an amino group (BDM) was synthesized, and then, the glycidyl methacrylate was grafted to the amino group to obtain the bismaleimide oligomer with an unsaturated double bond. The oligomers were combined with reaction diluents and photo-initiators to form photocurable inks that can be used for SLA 3D printing. The viscosity and curing behavior of the inks were studied, and the mechanical properties and heat resistance were tested. The tensile strength of 3D-printed samples based on BDM inks could reach 72.6 MPa (166% of that of commercial inks), glass transition temperature could reach 155 °C (205% of that of commercial inks), and energy storage modulus was 3625 MPa at 35 °C (327% of that of commercial inks). The maximum values of T-5%, T-50%, and Tmax of the 3D samples printed by BDM inks reached 351.5, 449.6, and 451.9 °C, respectively. These photocured BDM inks can be used to produce complex structural components and models with excellent mechanical and thermal properties, such as car parts, building models, and pipes.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 822
Author(s):  
Jy-Jiunn Tzeng ◽  
Tzu-Sen Yang ◽  
Wei-Fang Lee ◽  
Hsuan Chen ◽  
Hung-Ming Chang

In this study, five urethane acrylates (UAs), namely aliphatic urethane hexa-acrylate (87A), aromatic urethane hexa-acrylate (88A), aliphatic UA (588), aliphatic urethane triacrylate diluted in 15% HDD (594), and high-functional aliphatic UA (5812), were selected to formulate five UA-based photopolymer resins for digital light processing (DLP)-based 3D printing. Each UA (40 wt%) was added and blended homogenously with ethoxylated pentaerythritol tetraacrylate (40 wt%), isobornyl acrylate (12 wt%), diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (3 wt%), and a pink acrylic (5 wt%). Each UA-based resin specimen was designed using CAD software and fabricated using a DLP 3D printer to specific dimensions. Characteristics, mechanical properties, and cytotoxicity levels of these designed UA-based resins were investigated and compared with a commercial 3D printing denture base acrylic resin (BB base) control group at different UV exposure times. Shore hardness-measurement data and MTT assays were analyzed using a one-way analysis of variance with Bonferroni’s post hoc test, whereas viscosity, maximum strength, and modulus were analyzed using the Kruskal–Wallis test (α = 0.05). UA-based photopolymer resins with tunable mechanical properties were successfully prepared by replacing the UA materials and the UV exposure times. After 15 min of UV exposure, the 5812 and 594 groups exhibited higher viscosities, whereas the 88A and 87A groups exhibited lower viscosities compared with the BB base group. Maximum flexural strength, flexural modulus, and Shore hardness values also revealed significant differences among materials (p < 0.001). Based on MTT assay results, the UA-based photopolymer resins were nontoxic. In the present study, mechanical properties of the designed photopolymer resins could be adjusted by changing the UA or UV exposure time, suggesting that aliphatic urethane acrylate has good potential for use in the design of printable resins for DLP-type 3D printing in dental applications.


2006 ◽  
Vol 17 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Janisse Martinelli ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza ◽  
Luciana Assirati Casemiro ◽  
Camila Tirapelli ◽  
Heitor Panzer

This study compared the abrasion resistance of direct composite resins cured by light-emitting diodes (LED) and halogen light-curing units. Twenty specimens (12 mm in diameter; 1.0 mm thick) of each composite resin [TPH (Dentsply); Definite (Degussa); Charisma (Heraus Kulzer)] were prepared using a polytetrafluoroethylene matrix. Ten specimens per material were cured with the LED source and 10 with the halogen lamp for 40 s. The resin discs were polished, submitted to initial surface roughness reading (Ra initial - mum) in a roughness tester and stored in water at 37°C for 15 days. The specimens were weighed (M1) and submitted to simulated toothbrushing using slurry of water and dentifrice with high abrasiveness. After 100 minutes in the toothbrushing simulator, the specimens were cleaned, submitted to a new surface roughness reading (Ra final - mum) and reweighed (M2). Mass loss was determined as the difference between M1 and M2. Data were recorded and analyzed statistically by one-way ANOVA and Tukey Test at 5% significance level. The composite resin with greater size of inorganic fillers (TPH) showed the lowest mass loss and surface roughness means, indicating a higher resistance to toothbrush abrasion (p<0.05). Definite cured with LED presented the least resistance to toothbrush abrasion, showing the highest means of surface roughness and mass loss (p<0.05). The LED source did not show the same effectiveness as the halogen lamp for polymerizing this specific composite resin. When the composite resins were cured a halogen LCU, no statistically significant difference was observed among the materials (p>0.05). It may be concluded that the type of light-curing unit and the resin composition seemed to interfere with the materials' resistance to abrasion.


2018 ◽  
Vol 21 (3) ◽  
pp. 288
Author(s):  
Bruno Mendonça Lucena De Veras ◽  
Geórgia Pires dos Santos Menezes ◽  
Hugo Leonardo Mendes Barros ◽  
Marcelya Chrystian Moura Rocha ◽  
Aditonio De Carvalho Monteiro ◽  
...  

<p><strong>Objective: </strong>The objective of this study was to evaluate the 6-month clinical performance of class I occlusal composite resin restorations through a multicenter, randomized, double-blind, clinical trial. <strong>Material e Métodos: </strong>Two hundred and eighty class I occlusal restorations were performed in 70 patients (aged between 17 to 50 years).  The restorations were divided into four groups: G1 (Filtek P60/3M ESPE); G2 (Rok/SDI); G3 (Filtek™ P90/3M ESPE); G4 (Evolux/Dentsply). Two pre-calibrated dental practitioners performed and evaluated the restorative procedures regarding to color match, marginal discoloration, recurrent caries, wear (anatomic form) and marginal integrity according to the USPHS criteria. <strong>Resultados: </strong>In 85.8% of the evaluated restorations was observed the ideal score (A) for color match; 91.4% for marginal discoloration; 100% for recurrent caries; 87.7% for wear (anatomic form) and 99.3% for marginal integrity.<strong> Conclusion: </strong>The composite resins used in this study presented satisfactory and similar clinical performance in a 6-month clinical evaluation.</p><p><strong>Keywords</strong></p><p>Dentistry; Composite resins; Permanent dental restoration; Molar; Bicuspid.</p>


Sign in / Sign up

Export Citation Format

Share Document