scholarly journals High-Performance Flexible Ultraviolet Photodetectors with Ni/Cu-Codoped ZnO Nanorods Grown on PET Substrates

Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1067 ◽  
Author(s):  
Hafiz Muhammad Salman Ajmal ◽  
Fasihullah Khan ◽  
Noor Ul Huda ◽  
Sunjung Lee ◽  
Kiyun Nam ◽  
...  

As a developing technology for flexible electronic device fabrication, ultra-violet (UV) photodetectors (PDs) based on a ZnO nanostructure are an effective approach for large-area integration of sensors on nonconventional substrates, such as plastic or paper. However, photoconductive ZnO nanorods grown on flexible substrates have slow responses or recovery as well as low spectral responsivity R because of the native defects and inferior crystallinity of hydrothermally grown ZnO nanorods at low temperatures. In this study, ZnO nanorod crystallites are doped with Cu or Ni/Cu when grown on polyethylene terephthalate (PET) substrates in an attempt to improve the performance of flexible PDs. The doping with Ni/Cu or Cu not only improves the crystalline quality but also significantly suppresses the density of deep-level emission defects in as-grown ZnO nanorods, as demonstrated by X-ray diffraction and photoluminescence. Furthermore, the X-ray photoelectron spectroscopy analysis shows that doping with the transition metals significantly increases the oxygen bonding with metal ions with enhanced O/Zn stoichiometry in as-grown nanorods. The fabricated flexible PD devices based on an interdigitated electrode structure demonstrates a very high R of ~123 A/W, a high on-off current ratio of ~130, and a significant improvement in transient response speed exhibiting rise and fall time of ~8 and ~3 s, respectively, by using the ZnO nanorods codoped by Ni/Cu.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1225 ◽  
Author(s):  
Hafiz Muhammad Salman Ajmal ◽  
Fasihullah Khan ◽  
Kiyun Nam ◽  
Hae Young Kim ◽  
Sam Dong Kim

A growth scheme at a low processing temperature for high crystalline-quality of ZnO nanostructures can be a prime stepping stone for the future of various optoelectronic devices manufactured on transparent plastic substrates. In this study, ZnO nanorods (NRs) grown by the hydrothermal method at 150 °C through doping of transition metals (TMs), such as Co, Ni, or Co-plus-Ni, on polyethylene terephthalate substrates were investigated by various surface analysis methods. The TM dopants in ZnO NRs suppressed the density of various native defect-states as revealed by our photoluminescence and X-ray photoelectron spectroscopy analysis. Further investigation also showed the doping into ZnO NRs brought about a clear improvement in carrier mobility from 0.81 to 3.95 cm2/V-s as well as significant recovery in stoichiometric contents of oxygen. Ultra-violet photodetectors fabricated with Co-plus-Ni codoped NRs grown on an interdigitated electrode structure exhibited a high spectral response of ~137 A/W, on/off current ratio of ~135, and an improvement in transient response speed with rise-up and fall-down times of ~2.2 and ~3.1 s, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chan Oeurn Chey ◽  
Ansar Masood ◽  
A. Riazanova ◽  
Xianjie Liu ◽  
K. V. Rao ◽  
...  

We have successfully synthesized Fe-doped ZnO nanorods by a new and simple method in which the adopted approach is by using ammonia as a continuous source ofOH-for hydrolysis instead of hexamethylenetetramine (HMT). The energy dispersive X-ray (EDX) spectra revealed that the Fe peaks were presented in the grown Fe-doped ZnO nanorods samples and the X-ray photoelectron spectroscopy (XPS) results suggested that Fe3+is incorporated into the ZnO lattice. Structural characterization indicated that the Fe-doped ZnO nanorods grow along thec-axis with a hexagonal wurtzite structure and have single crystalline nature without any secondary phases or clusters of FeO or Fe3O4observed in the samples. The Fe-doped ZnO nanorods showed room temperature (300 K) ferromagnetic magnetization versus field (M-H) hysteresis and the magnetization increases from 2.5 μemu to 9.1 μemu for Zn0.99Fe0.01O and Zn0.95Fe0.05O, respectively. Moreover, the fabricated Au/Fe-doped ZnO Schottky diode based UV photodetector achieved 2.33 A/W of responsivity and 5 s of time response. Compared to other Au/ZnO nanorods Schottky devices, the presented responsivity is an improvement by a factor of 3.9.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


Author(s):  
Shrikant SAINI ◽  
Izuki Matsumoto ◽  
Sakura Kishishita ◽  
Ajay Kumar Baranwal ◽  
Tomohide Yabuki ◽  
...  

Abstract Hybrid halide perovskite has been recently focused on thermoelectric energy harvesting due to the cost-effective fabrication approach and ultra-low thermal conductivity. To achieve high performance, tuning of electrical conductivity is a key parameter that is influenced by grain boundary scattering and charge carrier density. The fabrication process allows tuning these parameters. We report the use of anti-solvent to enhance the thermoelectric performance of lead-free hybrid halide perovskite, CH3NH3SnI3, thin films. Thin films with anti-solvent show higher connectivity in grains and higher Sn+4 oxidation states which results in enhancing the value of electrical conductivity. Thin films were prepared by a cost-effective wet process. Structural and chemical characterizations were performed using x-ray diffraction, scanning electron microscope, and x-ray photoelectron spectroscopy. The value of electrical conductivity and the Seebeck coefficient were measured near room temperature. The high value of power factor (1.55 µW/m.K2 at 320 K) was achieved for thin films treated with anti-solvent.


2018 ◽  
Vol 25 (6) ◽  
pp. 1642-1649 ◽  
Author(s):  
Harol Moreno Fernández ◽  
Marco Zangrando ◽  
Guillaume Sauthier ◽  
Alejandro R. Goñi ◽  
Vincent Carlino ◽  
...  

The choice of a reflective optical coating or filter material has to be adapted to the intended field of application. This is mainly determined by the required photon energy range or by the required reflection angle. Among various materials, nickel and rhodium are common materials used as reflective coatings for (soft) X-ray mirrors. Similarly, aluminium is one of the most commonly used materials for extreme ultraviolet and soft X-ray transmission filters. However, both of these types of optics are subject to carbon contamination, which can be increasingly problematic for the operation of the high-performance free-electron laser and synchrotron beamlines. As an attempt to remove this type of contamination, an inductively coupled plasma source has been used in conjunction with N2/O2/H2 and N2/H2 feedstock gas plasmas. Results from the chemical surface analysis of the above materials before and after plasma treatment using X-ray photoelectron spectroscopy are reported. It is concluded that a favorable combination of an N2/H2 plasma feedstock gas mixture leads to the best chemical surface preservation of Ni, Rh and Al while removing the carbon contamination. However, this feedstock gas mixture does not remove C contamination as rapidly as, for example, an N2/O2/H2 plasma which induces the surface formation of NiO and NiOOH in Ni and RhOOH in Rh foils. As an applied case, the successful carbon removal from ultrathin Al filters previously used at the FERMI FEL1 using an N2/H2 plasma is demonstrated.


2010 ◽  
Vol 256 (11) ◽  
pp. 3592-3597 ◽  
Author(s):  
L.L. Yang ◽  
Q.X. Zhao ◽  
M. Willander ◽  
X.J. Liu ◽  
M. Fahlman ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yinghui Han ◽  
Le Li ◽  
Yunpeng Liu ◽  
Xue Li ◽  
Xiaohan Qi ◽  
...  

A simple and efficient process method for the preparation of strontium bismuth oxides (SBOs) via an impregnation-calcination method is presented. The synthesized active materials are characterized using X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The electrochemical performance of the as-synthesized SBO samples is observed to decrease gradually as the strontium content is increased from 25% to 50%. The SBO sample with a Sr/Bi ratio of 1 : 3 shows the highest specific capacitance of 1228.7 F g−1 (specific capacity of 204.8 mAh g−1) at a current density of 1 A g−1 and a good cycling stability (75.1%) over 3000 charge-discharge cycles. The improved performance of the supercapacitors can be attributed to the unique structural features resulting from the addition of appropriate portions of Sr, which supports high electron conductivity and rapid ion/electron transport within the electrode and at the electrode/electrolyte interface. All the results show that the SBOs have considerable potential for use as high-performance battery-type electrodes in supercapacitors.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 105 ◽  
Author(s):  
Huiting Wang ◽  
Jin Mao ◽  
Zhaowei Zhang ◽  
Qi Zhang ◽  
Liangxiao Zhang ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium, which is a trichothecene mycotoxin. As the main mycotoxin with high toxicity, wheat, barley, corn and their products are susceptible to contamination of DON. Due to the stability of this mycotoxin, traditional methods for DON reduction often require a strong oxidant, high temperature and high pressure with more energy consumption. Therefore, exploring green, efficient and environmentally friendly ways to degrade or reduce DON is a meaningful and challenging issue. Herein, a dendritic-like α-Fe2O3 was successfully prepared using a facile hydrothermal synthesis method at 160 °C, which was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that dendritic-like α-Fe2O3 showed superior activity for the photocatalytic degradation of DON in aqueous solution under visible light irradiation (λ > 420 nm) and 90.3% DON (initial concentration of 4.0 μg/mL) could be reduced in 2 h. Most of all, the main possible intermediate products were proposed through high performance liquid chromatography-mass spectrometry (HPLC-MS) after the photocatalytic treatment. This work not only provides a green and promising way to mitigate mycotoxin contamination but also may present useful information for future studies.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 744 ◽  
Author(s):  
Jinyu Huang ◽  
Feifei Li ◽  
Baozhong Liu ◽  
Peng Zhang

The hydrogen generated via the water splitting method is restricted by the high level of theoretical potential exhibited by the anode. The work focuses on synthesizing a bifunctional catalyst with a high efficiency, that is, a nickel phosphide doped with the reduced graphene oxide nanosheets supported on the Ni foam (Ni2P/rGO/NF), via the hydrothermal approach together with the calcination approach specific to the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The Raman, X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscope (TEM), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM), as well as elemental mapping, are adopted to study the composition and morphology possessed by Ni2P/rGO/NF. The electrochemical testing is performed by constructing a parallel two-electrode electrolyzer (Ni2P/rGO/NF||Ni2P/rGO/NF). Ni2P/rGO/NF||Ni2P/rGO/NF needs a voltage of only 1.676 V for driving 10 mA/cm2, which is extremely close to Pt/C/NF||IrO2/NF (1.502 V). It is possible to maintain the current density for no less than 30 hours. It can be demonstrated that Ni2P/rGO/NF||Ni2P/rGO/NF has commercial feasibility, relying on the strong activity and high stability.


Sign in / Sign up

Export Citation Format

Share Document