scholarly journals The Arabidopsis Hypoxia Inducible AtR8 Long Non-Coding RNA also Contributes to Plant Defense and Root Elongation Coordinating with WRKY Genes under Low Levels of Salicylic Acid

2020 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Shuang Li ◽  
Saraswati Nayar ◽  
HuiYuan Jia ◽  
Sanjay Kapoor ◽  
Juan Wu ◽  
...  

AtR8 lncRNA was previously identified in the flowering plant Arabidopsis thaliana as an abundant Pol III-transcribed long non-coding RNA (lncRNA) of approximately 260 nt. AtR8 lncRNA accumulation is responsive to hypoxic stress and salicylic acid (SA) treatment in roots, but its function has not yet been identified. In this study, microarray analysis of an atr8 mutant and wild-type Arabidopsis indicated a strong association of AtR8 lncRNA with the defense response. AtR8 accumulation exhibited an inverse correlation with an accumulation of two WRKY genes (WRKY53/WRKY70) when plants were exposed to exogenous low SA concentrations (20 µM), infected with Pseudomonas syringae, or in the early stage of development. The highest AtR8 accumulation was observed 5 days after germination, at which time no WRKY53 or WRKY70 mRNA was detectable. The presence of low levels of SA resulted in a significant reduction of root length in atr8 seedlings, whereas wrky53 and wrky70 mutants exhibited the opposite phenotype. Taken together, AtR8 lncRNA participates in Pathogenesis-Related Proteins 1 (PR-1)-independent defense and root elongation, which are related to the SA response. The mutual regulation of AtR8 lncRNA and WRKY53/WRKY70 is mediated by Nonexpressor of Pathogenesis-Related Gene 1 (NPR1).

2007 ◽  
Vol 97 (7) ◽  
pp. 794-802 ◽  
Author(s):  
Shobha D. Potlakayala ◽  
Darwin W. Reed ◽  
Patrick S. Covello ◽  
Pierre R. Fobert

Systemic acquired resistance (SAR) is an induced defense response that confers long-lasting protection against a broad range of microbial pathogens. Here we show that treatment of Brassica napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against virulent strains of the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Leptosphaeria maculans. Localized preinoculation of plants with an avirulent strain of P. syringae pv. maculicola also enhanced resistance to these pathogens but was not as effective as BTH treatment. Single applications of either SAR-inducing pretreatment were effective against P. syringae pv. maculicola, even when given more than 3 weeks prior to the secondary challenge. The pretreatments also led to the accumulation of pathogenesis-related (PR) genes, including BnPR-1 and BnPR-2, with higher levels of transcripts observed in the BTH-treatment material. B. napus plants expressing a bacterial salicylate hydroxylase transgene (NahG) that metabolizes salicylic acid to catechol were substantially compromised in SAR and accumulated reduced levels of PR gene transcripts when compared with untransformed controls. Thus, SAR in B. napus displays many of the hallmarks of classical SAR including long lasting and broad host range resistance, association with PR gene activation, and a requirement for salicylic acid.


2016 ◽  
Vol 35 (6) ◽  
pp. 3185-3197 ◽  
Author(s):  
CHUNLIANG SHANG ◽  
WENHUI ZHU ◽  
TIANYU LIU ◽  
WEI WANG ◽  
GUANGXIN HUANG ◽  
...  

2020 ◽  
Vol 6 (27) ◽  
pp. eaaz9072 ◽  
Author(s):  
Jasmine Barra ◽  
Gabriel S. Gaidosh ◽  
Ezra Blumenthal ◽  
Felipe Beckedorff ◽  
Mina M. Tayari ◽  
...  

RNA 3′ end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3′ end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically.


2010 ◽  
Vol 56 (6) ◽  
pp. 480-486 ◽  
Author(s):  
Wojciech J. Janisiewicz ◽  
Jeffrey S. Buyer

Microflora of fruit surfaces have been the best source of antagonists against fungi causing postharvest decay of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grape, apple, and citrus. We characterized bacterial microflora on nectarine fruit surfaces from the early stage of development until harvest. Identification of bacterial strains was made using MIDI (fatty acid methyl ester analysis) and Biolog systems. Biolog identified 35% and MIDI 53% of the strains. Thus results from MIDI were used to determine the frequency of occurrence of genera and species. The most frequently occurring genera were Curtobacterium (21.31%), followed by Pseudomonas (19.99%), Microbacterium (13.57%), Clavibacter (9.69%), Pantoea (6.59%), and Enterobacter (4.26%). The frequency of isolations of some bacteria — for example, the major pseudomonads (Pseudomonas syringae, Pseudomonas putida, and Pseudomonas savastanoi) or Pantoea agglomerans — tended to decline as fruit developed. As Pseudomonas declined, Curtobacterium became more dominant. Time of isolation was a significant factor in the frequency of occurrence of different bacteria, indicating succession of the genera. Throughput screening of the bacterial strains against Monilinia fructicola on nectarine fruit resulted in the detection of strains able to control brown rot. The 10 best-performing antagonistic strains were subjected to secondary screening. Four strains reduced decay severity by more than 50% (51.7%–91.4% reduction) at the high pathogen inoculum concentration of 105conidia/mL.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1015 ◽  
Author(s):  
Chi ◽  
Wang ◽  
Wang ◽  
Yu ◽  
Yang

The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 436 ◽  
Author(s):  
Sung-Hwan Kang ◽  
Yong-Duo Sun ◽  
Osama O. Atallah ◽  
Jose Carlos Huguet-Tapia ◽  
Jerald D. Noble ◽  
...  

During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense.


2000 ◽  
Vol 13 (3) ◽  
pp. 277-286 ◽  
Author(s):  
I-ching Yu ◽  
Kevin A. Fengler ◽  
Steven J. Clough ◽  
Andrew F. Bent

A mutational study was carried out to isolate Arabidopsis thaliana plants that exhibit full or partial disruption of the RPS2-mediated hypersensitive response (HR) to Pseudomonas syringae that express avrRpt2. Five classes of mutants were identified including mutations at RPS2, dnd mutations causing a “defense, no death” loss-of-HR phenotype, a lesion-mimic mutant that also exhibited an HR¯phenotype, and a number of intermediate or partial-loss-of-HR mutants. Surprisingly, many of these mutants displayed elevated resistance to virulent P. syringae and, in some cases, to Peronospora parasitica. Constitutively elevated levels of pathogenesis-related (PR) gene expression and salicylic acid were also observed. In the lesion-mimic mutant, appearance of elevated resistance was temporally correlated with appearance of lesions. For one of the intermediate lines, resistance was shown to be dependent on elevated levels of salicylic acid. A new locus was identified and named IHR1, after the mutant phenotype of “intermediate HR.” Genetic analysis of the intermediate-HR plant lines was difficult due to uncertainties in distinguishing the partial/intermediate mutant phenotypes from wild type. Despite this difficulty, the intermediate-HR mutants remain of interest because they reveal potential new defense-related loci and because many of these lines exhibit partially elevated disease resistance without dwarfing or other apparent growth defects.


Oncotarget ◽  
2017 ◽  
Vol 8 (9) ◽  
pp. 14876-14886 ◽  
Author(s):  
Mingwei Chen ◽  
Baoquan Liu ◽  
Jianbing Xiao ◽  
Yingnan Yang ◽  
Yafang Zhang

RNA Biology ◽  
2019 ◽  
Vol 16 (10) ◽  
pp. 1401-1413 ◽  
Author(s):  
Fan Yi ◽  
Pei Zhang ◽  
Yao Wang ◽  
Yin Xu ◽  
Zhengxi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document