scholarly journals Flavonoids, Potential Bioactive Compounds, and Non-Shivering Thermogenesis

Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1168 ◽  
Author(s):  
Hye Kang ◽  
Sang Lee ◽  
Dammah Otieno ◽  
Kyoungsoo Ha

Obesity results from the body having either high energy intake or low energy expenditure. Based on this energy equation, scientists have focused on increasing energy expenditure to prevent abnormal fat accumulation. Activating the human thermogenic system that regulates body temperature, particularly non-shivering thermogenesis in either brown or white adipose tissue, has been suggested as a promising solution to increase energy expenditure. Together with the increasing interest in understanding the mechanism by which plant-derived dietary compounds prevent obesity, flavonoids were recently shown to have the potential to regulate non-shivering thermogenesis. In this article, we review the latest research on flavonoid derivatives that increase energy expenditure through non-shivering thermogenesis.

2015 ◽  
pp. S395-S402 ◽  
Author(s):  
R. POLEDNE ◽  
I. KRÁLOVÁ LESNÁ ◽  
S. ČEJKOVÁ

High-energy intake which exceeds energy expenditure leads to the accumulation of triglycerides in adipose tissue, predominantly in large-size adipocytes. This metabolic shift, which drives the liver to produce atherogenic dyslipidemia, is well documented. In addition, an increasing amount of monocytes/macrophages, predominantly the proinflammatory M1-type, cumulates in ectopic adipose tissue. The mechanism of this process, the turnover of macrophages in adipose tissue and their direct atherogenic effects all remain to be analyzed.


2016 ◽  
Vol 311 (1) ◽  
pp. R79-R88 ◽  
Author(s):  
Lorna M. Dickson ◽  
Shriya Gandhi ◽  
Brian T. Layden ◽  
Ronald N. Cohen ◽  
Barton Wicksteed

Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and β-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1347 ◽  
Author(s):  
Ri Ryu ◽  
Eun-Young Kwon ◽  
Ji-Young Choi ◽  
Jong Cheol Shon ◽  
Kwang-Hyeon Liu ◽  
...  

This study aimed to elucidate the molecular mechanism of Chrysanthemum morifolium Ramat. against obesity and diabetes, by comparing the transcriptional changes in epididymal white adipose tissue (eWAT) with those of the bioactive compound in C. morifolium, luteolin (LU). Male C57BL/6J mice were fed a normal diet, high-fat diet (HFD), and HFD supplemented with 1.5% w/w chrysanthemum leaf ethanol extract (CLE) for 16 weeks. Supplementation with CLE and LU significantly decreased the body weight gain and eWAT weight by stimulating mRNA expressions for thermogenesis and energy expenditure in eWAT via lipid mobilization, which may be linked to the attenuation of dyslipidemia. Furthermore, CLE and LU increased uncoupling protein-1 protein expression in brown adipose tissue, leading to energy expenditure. Of note, CLE and LU supplements enhanced the balance between lipid storage and mobilization in white adipose tissue (WAT), in turn, inhibiting adipocyte inflammation and lipotoxicity of peripheral tissues. Moreover, CLE and LU attenuated hepatic steatosis by suppressing hepatic lipogenesis, thereby ameliorating insulin resistance and dyslipidemia. Our data suggest that CLE helps inhibit obesity and its comorbidities via the complex interplay between liver and WAT in diet-induced obese mice.


2013 ◽  
Vol 57 (2) ◽  
pp. 203-207 ◽  
Author(s):  
Zhigang Zhang ◽  
Jianguo Wang ◽  
Ruifeng Gao ◽  
Weiqian Zhang ◽  
Xinwei Li ◽  
...  

Abstract The objective of the study was to determine expression of gene of insulin receptor (INSR) in adipose tissue of postpartum dairy cows fed diets containing different amounts of energy at the antepartum period. Healthy pregnant dairy cows (n=45) on 21st d of the antepartum were divided into three groups differing in diet composition, namely: control group fed a normal diet, high energy group fed a high energy diet, and low energy group fed a low energy diet. Twenty-one days after parturition, INSR gene expression in adipose tissue was determined by internally controlled reverse transcriptase PCR. The level of INSR mRNA in adipose tissues of cows fed the high energy diet was substantially lower than that in cows fed normal or low energy diets. A relatively higher level of INSR mRNA in the adipose tissue of cows fed low energy diet may be beneficial for gluconeogenesis and lipogenesis, which can relieve an energy negative balance. Reduced level of INSR mRNA in adipose tissue of cows fed high energy diet indicates that the response to insulin has significantly decreased.


2005 ◽  
Vol 98 (5) ◽  
pp. 1805-1812 ◽  
Author(s):  
Pernille Keller ◽  
Charlotte Keller ◽  
Adam Steensberg ◽  
Lindsay E. Robinson ◽  
Bente K. Pedersen

Leptin, an adipose tissue-derived cytokine, is correlated with adipose mass as obese persons have increased levels of leptin that decrease with weight loss. Previous studies demonstrate that high-energy-expenditure exercise decreases circulating leptin levels, whereas low-energy-expenditure exercise has no effect. We aimed to test the hypothesis that acute exercise reduced leptin mRNA levels in human adipose tissue and that this effect would be ameliorated by carbohydrate supplementation. Because exercise markedly increases circulating IL-6 and epinephrine, we investigated whether the changes in leptin seen with acute exercise could be mediated by IL-6 or epinephrine infusion. Abdominal subcutaneous adipose tissue mRNA and plasma levels of leptin were measured in healthy men in response to 3-h ergometer exercise with or without carbohydrate (CHO) ingestion ( n = 8) and in response to infusion with recombinant human (rh)IL-6 ( n = 11) or epinephrine ( n = 8) or saline. Plasma leptin declined in response to exercise ( P < 0.05) compared with rest, whereas mRNA expression in adipose tissue was unaffected. The exercise-induced decrease in plasma leptin was attenuated by CHO ingestion ( P < 0.001). A 3-h epinephrine infusion decreased plasma leptin ( P < 0.001) to the same level seen with 3 h of exercise, whereas leptin levels were unaffected by rhIL-6 infusion. In conclusion, both acute exercise and epinephrine infusion decreased plasma leptin to a similar extent, whereas there was no effect with rhIL-6 infusion. Acute exercise solely affected leptin plasma levels, as mRNA levels were unchanged. The exercise-induced decrease in circulating leptin was counteracted by CHO ingestion, suggesting a posttranscriptional regulatory mechanism of leptin involving substrate availability.


1994 ◽  
Vol 77 (1) ◽  
pp. 366-372 ◽  
Author(s):  
M. I. Goran ◽  
J. Calles-Escandon ◽  
E. T. Poehlman ◽  
M. O'Connell ◽  
E. Danforth

This study was designed to examine effects of alterations in energy balance on adaptive changes in components of total energy expenditure (TEE). Nineteen young healthy males were studied during a 10-day sedentary energy balance baseline period and then randomly assigned to one of four 10-day treatment groups: 1) no change in energy intake (EI) or physical activity (PA; energy balance at low energy flux), 2) EI increased by 50% with no change in PA (positive energy balance), 3) TEE increased by 50% by increasing PA, matched by a 50% increase in EI (energy balance at high energy flux), and 4) TEE increased by 50% by increasing PA with no change in EI (negative energy balance). TEE was measured with doubly labeled water, resting metabolic rate (RMR) by indirect calorimetry, and thermic response to feeding (TEF) by indirect calorimetry; energy expenditure of physical activity (EEPA) was estimated by subtracting RMR, TEF, and prescribed PA from TEE. TEE was significantly increased by PA (by design) but not EI. There was a significant main effect of intake and a significant intake-by-activity interaction for changes in RMR. In post hoc analysis, RMR was significantly increased during positive energy balance and energy balance at high energy flux relative to change in RMR when energy balance was maintained at low energy flux. A significant increase in RMR was also noted during negative energy balance after adjustment for change in fat-free mass. There was no significant difference in change in RMR among the three treatment groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 28 (4) ◽  
pp. 211-227 ◽  
Author(s):  
L.A. den Hartog ◽  
G.J.M. van Kempen

A review of experiments on the effect of energy and protein intake on fertility in gilts suggested that a high energy intake shortly before oestrus (flushing) increased ovulation rate. Although high energy intake gave more ovulations than low energy intake, embryonic mortality was greater. The most suitable sequence during rearing, flushing and early pregnancy seemed to be low, high and low energy, respectively. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Md Rafiul Haque ◽  
◽  
Monika Dhaka ◽  

Obesity appears as fat accumulation in adipose tissue from high energy intake and insufficient energy consumption. It is accompanied by several factors such as genetics, environmental, fetal nutrition, energy intake and expenditure, and culture. These factors stimulate several other mechanisms that contribute to obesity and obesity-related disorders such as hypertension, diabetes, arthritis, hyperlipidemia, coronary heart disease, etc. In the present article, we have examined the main factors, symptoms, and special problems associated with obesity, mechanisms of obesity, and the relation of important parameters with obesity. We have also depicted the various animal models for obesity research. Lastly, we have described the management of obesity.


Sign in / Sign up

Export Citation Format

Share Document