scholarly journals Energy Status and Body Composition Across a Collegiate Women’s Lacrosse Season

Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 470 ◽  
Author(s):  
Hannah Zabriskie ◽  
Bradley Currier ◽  
Patrick Harty ◽  
Richard Stecker ◽  
Andrew Jagim ◽  
...  

Little data is available regarding the energy and nutritional status of female collegiate team sport athletes. Twenty female NCAA Division II lacrosse athletes (mean ± SD: 20.4 ± 1.8 years; 68.8 ± 8.9 kg; 168.4 ± 6.6 cm; 27.9 ± 3% body fat) recorded dietary intake and wore a physical activity monitor over four consecutive days at five different time points (20 days total) during one academic year. Body composition, bone health, and resting metabolic rate were assessed in conjunction with wearing the monitor during off-season, pre-season, and season-play. Body fat percentage decreased slightly during the course of this study (p = 0.037). Total daily energy expenditure (TDEE) (p < 0.001) and activity energy expenditure (AEE) (p = 0.001) energy were found to change significantly over the course of the year, with pre-season training resulting in the highest energy expenditures (TDEE: 2789 ± 391 kcal/day; AEE: 1001 ± 267 kcal/day). Caloric (2124 ± 448 kcal/day), carbohydrate (3.6 ± 1.1 g/kg), and protein (1.2 ± 0.3 g/kg) intake did not change over the course of the year (p > 0.05). Athletes self-reported a moderate negative energy balance (366–719 kcal/day) and low energy availability (22.9–30.4 kcal/kg FFM) at each measurement period throughout the study. Reported caloric and macronutrient intake was low given the recorded energy expenditure and macronutrient intake recommendations for athletes. Athletic support staff should provide athletes with appropriate fueling strategies, particularly during pre-season training, to adequately meet energy demands.

1999 ◽  
Vol 276 (6) ◽  
pp. R1739-R1748 ◽  
Author(s):  
T. P. Stein ◽  
M. J. Leskiw ◽  
M. D. Schluter ◽  
R. W. Hoyt ◽  
H. W. Lane ◽  
...  

The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE,18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment ( n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6° head-down tilt bed rest study with controlled dietary intake ( n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 ± 0.4 kg, P < 0.05) and N retention (−2.37 ± 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 ± 180 vs. 1,943 ± 179 kcal/day, P < 0.05). EE in flight was 3,320 ± 155 kcal/day, resulting in a negative energy balance of 1,355 ± 80 kcal/day (−15.7 ± 1.0 kcal ⋅ kg−1 ⋅ day−1, P < 0.05). This corresponded to a loss of 2.1 ± 0.4 kg body fat, which was within experimental error of the fat loss determined by18O dilution (−1.4 ± 0.5 kg) and DEXA (−2.4 ± 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 × resting metabolic rate + exercise.


2019 ◽  
Vol 10 (1) ◽  
pp. 31-58
Author(s):  
Katarina Tomljenović Borer

The rapid global rise of obesity incurs a heavy personal and healthcare burden due to obesity-associated morbidities and shortening of life. The purpose of this review is to provide evidence-based strategies for prevention, reversal, and mitigation of obesity and its sequelae. To that end, this review highlights the features of human physiology that favor fat accretion and interfere with fat loss. Strategies for prevention of obesity include understanding the basis for the strong motivating properties of palatable food, for human inability to consciously detect calories eaten or calories expended through exercise, for metabolic and hormonal adaptations to negative energy balance that drive weight regain, and for evolutionary natural selection which likely led to high human capacity for fat storage. Reversal of obesity is difficult primarily due to metabolic, hormonal, and behavioral reactions to body fat loss. Reduced resting metabolic rate presents a physiological challenge whether the weight loss is achieved through dietary restriction or energy expenditure of exercise. Increased insulin sensitivity after body fat loss drives resynthesis of storage substrates including triglycerides in the adipose tissue, muscle glycogen, and proteins, thus contributing to weight regain. Reduced basal plasma leptin concentration elicits a strong hunger drive. Mitigation of obesity-associated morbidities involves adding exercise energy expenditure to deliberate control of the quantity of food eaten, reducing postprandial hyperinsulinemia by lowering the carbohydrate load of the diet, and exercising after, rather than before, the meals to facilitate improved glucose tolerance.


2020 ◽  
Vol 17 (4) ◽  
pp. 456-463
Author(s):  
Gregory A. Hand ◽  
Robin P. Shook ◽  
Daniel P. O’Connor ◽  
Madison M. Kindred ◽  
Sarah Schumacher ◽  
...  

Background: The present study examined, among weight-stable overweight or obese adults, the effect of increasing doses of exercise energy expenditure (EEex) on changes in total daily energy expenditure (TDEE), total body energy stores, and body composition. Methods: Healthy, sedentary overweight/obese young adults were randomized to one of 3 groups for a period of 26 weeks: moderate-exercise (EEex goal of 17.5 kcal/kg/wk), high-exercise (EEex goal of 35 kcal/kg/wk), or observation group. Individuals maintained body weight within 3% of baseline. Pre/postphysical activity between-group measurements included body composition, calculated energy intake, TDEE, energy stores, and resting metabolic rate. Results: Sixty weight-stable individuals completed the protocols. Exercise groups increased EEex in a stepwise manner compared with the observation group (P < .001). There was no group effect on changes in TDEE, energy intake, fat-free mass, or resting metabolic rate. Fat mass and energy stores decreased among the females in the high-exercise group (P = .007). Conclusions: The increase in EEex did not result in an equivalent increase in TDEE. There was a sex difference in the relationship among energy balance components. These results suggest a weight-independent compensatory response to exercise training with potentially a sex-specific adjustment in body composition.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


Author(s):  
Clíodhna McHugh ◽  
Karen Hind ◽  
Aoife O'Halloran ◽  
Daniel Davey ◽  
Gareth Farrell ◽  
...  

AbstractThe purpose of this study was to investigate longitudinal body mass and body composition changes in one professional rugby union team (n=123), (i) according to position [forwards (n=58) versus backs (n=65)], analysis of players with 6 consecutive seasons of DXA scans (n=21) and, (iii) to examine differences by playing status [academy and international], over 7 years. Players [mean age: 26.8 y, body mass index: 28.9+kg.m2] received DXA scans at fourtime points within each year. A modest (but non-significant) increase in mean total mass (0.8 kg) for professional players was reflected by increased lean mass and reduced body fat mass. At all-time points, forwards had a significantly greater total mass, lean mass and body fat percentage compared to backs (p<0.05). Academy players demonstrated increased total and lean mass and decreased body fat percentage over the first 3 years of senior rugby, although this was not significant. Senior and academy international players had greater lean mass and lower body fat percentage (p<0.05) than non-international counterparts. Despite modest increases in total mass; reflected by increased lean mass and reduced fat mass, no significant changes in body mass or body composition, irrespective of playing position were apparent over 7 years.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Niu ◽  
Xue-lin Zhao ◽  
Hui-juan Ruan ◽  
Xiao-meng Mao ◽  
Qing-ya Tang

Abstract Background Current adult studies suggest that uric acid (UA) is associated with body fat, but the relationship in obese children is unclear. Thus, we aim to evaluate the association between uric acid and body composition of obese children. Methods A total of 79 obese children were included in this study, and 52 children (34 boys and 18 girls) underwent a 6-week weight loss camp, including 34 boys and 18 girls. Six-week weight-loss interventions were performed on all participants through aerobic exercise and appropriate dietary control. Laboratory tests and body composition were collected before and after the intervention. Results Before the intervention, correlation analysis demonstrated that uric acid was positively correlated with height, weight, body mass index (BMI), waist circumference, hip circumference, fat mass (FM), and free fat mass (FFM) with adjusting for age and gender (P < 0.05). After 6 weeks of intervention, the participants gained 3.12 ± 0.85 cm in height, body fat percentage decreased by 7.23 ± 1.97%, and lost 10.30 ± 2.83 kg in weight. Univariate and multivariate analysis indicated that uric acid at baseline was associated with FM reduction during weight loss (P < 0.05). Conclusions This study is the first report that uric acid is associated with BMI and FM, and may play an important role in the reduction of FM during weight loss in obese children and adolescents. The interaction between UA and adiposity factors and its underlying mechanisms need to be further explored. Trial registration This study was registered in Clinical Trials.gov (NCT03490448) and approved by the Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.


2021 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
Fillah Fithra Dieny ◽  
A Fahmy Arif Tsani ◽  
Umu Faradilla ◽  
Ayu Rahadiyanti

Background: Santriwati (Islamic female student), women of reproductive age, were susceptible to experienced Chronic Energi Deficiency (CED). CED reflects the low energy availability of someone who can risk reducing bone density. Objectives: This study aimed to analyze the differences in body mass index, body fat percentage, hemoglobin levels, energy availability, and bone mineral density of female students who experienced CED risk and not experienced CED risk.Materials and Methods: The research design was a cross-sectional study, with 101 female students as subjects who were selected by random sampling. The research was conducted from February to March 2019 at the Kyai Galang Sewu Islamic Boarding School, Semarang. CED risk data was taken using the upper arm circumference measurement. Percent body fat and BMI data were taken using BIA. Energy availability data is obtained from the difference between energy intake (energy intake) and energy output (energy expenditure through physical activity) divided by Fat-Free Mass (FFM). Energy intake data was taken using the SQ-FFQ questionnaire, and energy expenditure was calculated using the 24-hour activity record form. Anemia data were collected using strip hemoglobin measurements. Bone density data were taken using the Osteosys Sonost 3000 densitometer. Bivariate analysis used the Independent T-Test.Results: A total of 57.2% of subjects experienced anemia. Subjects who had underweight nutritional status were 20.8%. Santriwati experienced osteopenia as much as 13.9%. There was no difference in bone density and hemoglobin levels between female students who were at risk of CED and not CED risk (p> 0.05), but there were differences in energy availability, body fat percentage, BMI between those at risk of CED and not CED risk (p <0.05)Conclusion: subjects at risk of CED (Lila <23.5 cm) had lower energy availability, body fat, and BMI than subjects who were not at risk of CED.


2004 ◽  
Vol 96 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
Louise C. Mâsse ◽  
Janet E. Fulton ◽  
Kathleen L. Watson ◽  
Matthew T. Mahar ◽  
Michael C. Meyers ◽  
...  

This study investigated the influence of two approaches (mathematical transformation and statistical procedures), used to account for body composition [body mass or fat-free mass (FFM)], on associations between two measures of physical activity and energy expenditure determined by doubly labeled water (DLW). Complete data for these analyses were available for 136 African American (44.1%) and Hispanic (55.9%) women (mean age 50 ± 7.3 yr). Total energy expenditure (TEE) by DLW was measured over 14 days. Physical activity energy expenditure (PAEE) was computed as 0.90 × TEE - resting metabolic rate. During week 2, participants wore an accelerometer for 7 consecutive days and completed a 7-day diary. Pearson's product-moment correlations and three statistical procedures (multiple regressions, partial correlations, and allometric scaling) were used to assess the effect of body composition on associations. The methods-comparison analysis was used to study the effect of body composition on agreement. The statistical procedures demonstrated that associations improved when body composition was included in the model. The accelerometer explained a small but meaningful portion of the variance in TEE and PAEE after body mass was accounted for. The methods-comparison analysis confirmed that agreement with DLW was affected by the transformation. Agreement between the diary (transformed with body mass) and TEE reflected the association that exists between body mass and TEE. These results suggest that the accelerometer and diary accounted for a small portion of TEE and PAEE. Most of the variance in DLW-measured energy expenditure was explained by body mass or FFM.


2015 ◽  
Vol 12 (6) ◽  
pp. 764-769 ◽  
Author(s):  
Bruce W. Bailey ◽  
Pamela Borup ◽  
James D. LeCheminant ◽  
Larry A. Tucker ◽  
Jacob Bromley

Background:The purpose of this study was to assess the relationship between intensity of physical activity (PA) and body composition in 343 young women.Methods:Physical activity was objectively measured using accelerometers worn for 7 days in women 17 to 25 years. Body composition was assessed using the BOD POD.Results:Young women who spent less than 30 minutes a week performing vigorous PA had significantly higher body fat percentages than women who performed more than 30 minutes of vigorous PA per week (F = 4.54, P = .0113). Young women who spent less than 30 minutes per day in moderate to vigorous PA (MVPA) had significantly higher body fat percentages than those who obtained more than 30 minutes per day of MVPA (F = 7.47, P = .0066). Accumulating more than 90 minutes of MVPA per day was associated with the lowest percent body fat. For every 10 minutes spent in MVPA per day, the odds of having a body fat percentage above 32% decreased by 29% (P = .0002).Conclusion:Vigorous PA and MVPA are associated with lower adiposity. Young women should be encouraged to accumulate at least 30 minutes of MVPA per day, however getting more than 90 minutes a day is predictive of even lower levels of adiposity.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 4623-4633 ◽  
Author(s):  
Ruth B. S. Harris ◽  
Timothy J. Bartness ◽  
Harvey J. Grill

Peripheral infusions of physiological doses of leptin decrease body fat mass, but it is not known whether this results from direct effects on peripheral tissue or activation of central leptin receptors. In this study, we infused chronically decerebrate (CD) rats, in which the forebrain was surgically isolated from the caudal brainstem, with 60 μg leptin/d or PBS for 14 d from ip mini-osmotic pumps. The CD rats were tube fed an amount of food equivalent to the intake of ad libitum-fed intact controls or 75% of this amount to account for their reduced energy expenditure. Control rats fed ad libitum or tube fed 75, 100, or 125% of their ad libitum intake also were peripherally infused with leptin or PBS. CD rats had a lower serum testosterone, energy expenditure, and lean body mass compared with controls but had increased levels of adiponectin and leptin and were obese. Leptin increased body fat and decreased energy expenditure during the light period in 100%-fed CD rats, but not 75%-fed CD rats. Leptin decreased body fat of ad libitum- and 100%-fed but not 75%-fed or 125%-fed intact controls. Energy expenditure did not change in any control group. These results show that leptin can change body fat independent of a change in food intake or energy expenditure, that the forebrain normally prevents leptin from inhibiting energy expenditure through mechanisms initiated in the caudal brainstem or peripheral tissues, and that the leptin response in both intact and CD rats is determined by the energy status of the animal.


Sign in / Sign up

Export Citation Format

Share Document