scholarly journals The Influence of Dietary Fatty Acids on Immune Responses

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2990 ◽  
Author(s):  
Urszula Radzikowska ◽  
Arturo O. Rinaldi ◽  
Zeynep Çelebi Sözener ◽  
Dilara Karaguzel ◽  
Marzena Wojcik ◽  
...  

Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.

2001 ◽  
Vol 44 (1) ◽  
pp. 89-98 ◽  
Author(s):  
M. Pfeuffer

Abstract. Dietary fatty acids have a wide spectrum of functions in the body. They may all serve as energy source, but polyunsaturated fatty acids are preferably incorporated into cell membranes and affect membrane composition and functionality. Some fatty acids may change gene transcription, and long chain polyunsaturated fatty acids, released from cell membranes, serve as precursors of eicosanoid synthesis. Fatty acids affect lipid and lipoprotein levels. Lipoproteins may be modified in several ways, e.g. become oxidized or glycated, which in turn affects their metabolic fate. Fatty acids affect endothelial function via inflammatory, oxidative and haemostatic processes. This shows that fatty acids exert regulatory functions in many ways beyond plasma cholesterol level changes. Effects of individual fatty acids are not necessarily one-directional, i.e. there may be both negative and positive aspects to them. Omega3 polyunsatureated fatty acids have a particularly wide spectrum of favourable effects.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 479
Author(s):  
Souvik Mukerjee ◽  
Abdulaziz S. Saeedan ◽  
Mohd. Nazam Ansari ◽  
Manjari Singh

Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P–L–P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P–L–P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.


Blood ◽  
2014 ◽  
Vol 124 (5) ◽  
pp. 700-709 ◽  
Author(s):  
Mette D. Hazenberg ◽  
Hergen Spits

Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of particular transcription factors for their development and function. Group 1 ILCs (ILC1s) produce interferon γ and depend on Tbet, group 2 ILCs (ILC2s) produce type 2 cytokines like interleukin-5 (IL-5) and IL-13 and require GATA3, and group 3 ILCs (ILC3s) include lymphoid tissue inducer cells, produce IL-17 and/or IL-22, and are dependent on RORγt. Whereas ILCs play essential roles in the innate immune system, uncontrolled activation and proliferation of ILCs can contribute to inflammatory autoimmune diseases. In this review, we provide an overview of the characteristics of ILCs in the context of health and disease. We will focus on human ILCs but refer to mouse studies if needed to clarify aspects of ILC biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengzheng Shi ◽  
Hiroshi Ohno ◽  
Naoko Satoh-Takayama

Innate lymphoid cells (ILCs) are a group of innate immune cells that possess overlapping features with T cells, although they lack antigen-specific receptors. ILCs consist of five subsets-ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK) cells. They have significant functions in mediating various immune responses, protecting mucosal barrier integrity and maintaining tissue homeostasis in the lung, skin, intestines, and liver. ILCs react immediately to signals from internal and external sources. Emerging evidence has revealed that dietary micronutrients, such as various vitamins and minerals can significantly modulate immune responses through ILCs and subsequently affect human health. It has been demonstrated that micronutrients control the development and proliferation of different types of ILCs. They are also potent immunoregulators in several autoimmune diseases and play vital roles in resolving local inflammation. Here, we summarize the interplay between several essential micronutrients and ILCs to maintain epithelial barrier functions in various mucosal tissues and discuss their limitations and potentials for promoting human health.


2003 ◽  
Vol 62 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Klaus W. J. Wahle ◽  
Dino Rotondo ◽  
Steven D. Heys

Over the last 30 years it has become apparent that specific dietary fatty acids are capable of regulating, either directly or indirectly through various signal pathways, the expression of numerous genes, either positively or negatively. Such nutrient-gene interactions have important effects on cell metabolism, differentiation and growth, and ultimately on disease processes. The present review describes some of the more important fatty acid-gene interactions in relation to health and disease in mammalian species, and focuses on the underlying cell signal mechanisms, including various transcription factors, affected by fatty acids and some of their oxygenated derivatives, e.g. the eicosanoids. The review also attempts to clarify some of the complexities of the effects of fatty acids by suggesting a possible overriding regulation by the redox status of the cell. The latter will at least stimulate controversy in this exciting area of lipid research.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 264
Author(s):  
Yongnan Li ◽  
Yuning Pang ◽  
Zengqi Zhao ◽  
Xiaojun Xiang ◽  
Kangsen Mai ◽  
...  

Elongation of very long-chain fatty acids protein 6 (Elovl6) is a crucial enzyme in the synthesis of endogenous fatty acids, which participates in the energy balance and metabolic diseases. The main objective of this study was to explore the molecular characterization of Elovl6 and the regulation of elovl6 expression in response to dietary fatty acids and insulin. In the present study, the ORF (open reading frame) of Elovl6 from rainbow trout was cloned and characterized, which showed a high identity (87%) with mammals and other teleost. The results of quantitative PCR showed that the transcriptional levels of elovl6 from rainbow trout that were fed diets containing soybean oil (enriched with 18:2n-6, linoleic acid (LA)) or linseed oil (enriched with 18:3n-3, α-linolenic acid (ALA)) were lower than those in the group that were fed diets containing fish oil (enriched with 20:5n-3, eicosapentaenoic acid (EPA) and 22:6n-3, docosahexaenoic acid (DHA)). Correspondingly, mRNA expression of elovl6 in hepatocytes treated with DHA was dramatically higher than that in LA and ALA groups. The transcriptional expression of elovl6 in hepatocytes treated with insulin was also significantly increased. Moreover, the dual luciferase assay showed the transcription factor CREB1 dramatically up-regulated the promoter activity of elovl6, while FOXO1 significantly down-regulated the elovl6 promoter activity in rainbow trout. The differences in transcriptional expression of crbe1 and foxo1 may contribute to the increase or decrease of elovl6 expression in rainbow trout in response to fatty acids or insulin. These findings revealed the molecular characterization of elovl6 and the regulation of elovl6 expression by CREB1 and FOXO1 in rainbow trout in response to dietary fatty acids or insulin.


2018 ◽  
Vol 9 (3) ◽  
pp. 247-262 ◽  
Author(s):  
E Madison Sullivan ◽  
Edward Ross Pennington ◽  
William D Green ◽  
Melinda A Beck ◽  
David A Brown ◽  
...  

2002 ◽  
Vol 87 (4) ◽  
pp. 375-382 ◽  
Author(s):  
Christine A. Mattacks ◽  
Dawn Sadler ◽  
Caroline M. Pond

The effects of feeding beef suet (mostly saturated and monoenoic fatty acids), sunflower oil (rich inn-6 fatty acids) and fish oil (rich inn-3 fatty acids) on the response of mesenteric, omental, popliteal and perirenal adipocytes to experimentally-induced local inflammation were studied in adult guinea pigs. After 6 weeks on the experimental diets, the animals were fed standard chow, and lipopolysaccharide was injected unilaterally daily for 4 d to induce swelling of one popliteal lymph node. Basal lipolysis in the perinodal adipocytes of all depots studied was higher in the sunflower oil-fed animals than in the controls fed on standard chow, and lower in those fed on suet or fish oil. Dietary lipids altered rates of lipolysis during incubation with 10-5M noradrenaline in all samples studied from the locally-activated popliteal depot, but only in adipocytes within 5 mm of a large lymph node in the other depots. The fish-oil diet attenuated the spread of increased lipolysis within the locally-activated popliteal adipose tissue, and from this depot to other node-containing depots. These experiments show thatn-6 polyunsaturated fatty acids promote andn-3 fatty acids suppress the spread of immune activation to adipocytes within and between depots, and alter the sensitivity of perinodal adipocytes to noradrenaline. Dietary effects are reduced or absent in adipocytes in sites remote from lymph nodes, and thus such samples do not adequately represent processes in perinodal adipose tissue. These results are consistent with the hypothesis that perinodal adipocytes interact with adjacent lymphoid cells during immune responses.


Author(s):  
Chang H. Kim

AbstractA mounting body of evidence indicates that dietary fiber (DF) metabolites produced by commensal bacteria play essential roles in balancing the immune system. DF, considered nonessential nutrients in the past, is now considered to be necessary to maintain adequate levels of immunity and suppress inflammatory and allergic responses. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are the major DF metabolites and mostly produced by specialized commensal bacteria that are capable of breaking down DF into simpler saccharides and further metabolizing the saccharides into SCFAs. SCFAs act on many cell types to regulate a number of important biological processes, including host metabolism, intestinal functions, and immunity system. This review specifically highlights the regulatory functions of DF and SCFAs in the immune system with a focus on major innate and adaptive lymphocytes. Current information regarding how SCFAs regulate innate lymphoid cells, T helper cells, cytotoxic T cells, and B cells and how these functions impact immunity, inflammation, and allergic responses are discussed.


Sign in / Sign up

Export Citation Format

Share Document