scholarly journals Metabolomic and Metataxonomic Fingerprinting of Human Milk Suggests Compositional Stability over a Natural Term of Breastfeeding to 24 Months

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3450
Author(s):  
Natalie S. Shenker ◽  
Alvaro Perdones-Montero ◽  
Adam Burke ◽  
Sarah Stickland ◽  
Julie A.K. McDonald ◽  
...  

Sparse data exist regarding the normal range of composition of maternal milk beyond the first postnatal weeks. This single timepoint, observational study in collaboration with the ‘Parenting Science Gang’ citizen science group evaluated the metabolite and bacterial composition of human milk from 62 participants (infants aged 3–48 months), nearly 3 years longer than previous studies. We utilised rapid evaporative ionisation mass spectrometry (REIMS) for metabolic fingerprinting and 16S rRNA gene metataxonomics for microbiome composition analysis. Milk expression volumes were significantly lower beyond 24 months of lactation, but there were no corresponding changes in bacterial load, composition, or whole-scale metabolomic fingerprint. Some individual metabolite features (~14%) showed altered abundances in nursling age groups above 24 months. Neither milk expression method nor nursling sex affected metabolite and metataxonomic fingerprints. Self-reported lifestyle factors, including diet and physical traits, had minimal impact on metabolite and metataxonomic fingerprints. Our findings suggest remarkable consistency in human milk composition over natural-term lactation. The results add to previous studies suggesting that milk donation can continue up to 24 months postnatally. Future longitudinal studies will confirm the inter-individual and temporal nature of compositional variations and the use of donor milk as a personalised therapeutic.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alba Boix-Amorós ◽  
Maria Teresa Hernández-Aguilar ◽  
Alejandro Artacho ◽  
Maria Carmen Collado ◽  
Alex Mira

Abstract Sub-acute mastitis (SAM) is a prevalent disease among lactating women, being one of the main reasons for early weaning. Although the etiology and diagnosis of acute mastitis (AM) is well established, little is known about the underlying mechanisms causing SAM. We collected human milk samples from healthy and SAM-suffering mothers, during the course of mastitis and after symptoms disappeared. Total (DNA-based) and active (RNA-based) microbiota were analysed by 16S rRNA gene sequencing and qPCR. Furthermore, mammary epithelial cell lines were exposed to milk pellets, and levels of the pro-inflammatory interleukin IL8 were measured. Bacterial load was significantly higher in the mastitis samples and decreased after clinical symptoms disappeared. Bacterial diversity was lower in SAM milk samples, and differences in bacterial composition and activity were also found. Contrary to AM, the same bacterial species were found in samples from healthy and SAM mothers, although at different proportions, indicating a dysbiotic ecological shift. Finally, mammary epithelial cell exposure to SAM milk pellets showed an over-production of IL8. Our work therefore supports that SAM has a bacterial origin, with increased bacterial loads, reduced diversity and altered composition, which partly recovered after treatment, suggesting a polymicrobial and variable etiology.


2012 ◽  
Vol 78 (17) ◽  
pp. 6153-6160 ◽  
Author(s):  
Elizabeth A. Maga ◽  
Prerak T. Desai ◽  
Bart C. Weimer ◽  
Nguyet Dao ◽  
Dietmar Kültz ◽  
...  

ABSTRACTHuman milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels ofFirmicutes(Clostridia) declined whereas those ofBacteroidetesincreased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P< 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (BifidobacteriaceaeandLactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae,Streptococcaceae,Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.


2019 ◽  
Vol 6 (9) ◽  
Author(s):  
Cindy M Liu ◽  
Zoe R Packman ◽  
Alison G Abraham ◽  
David M Serwadda ◽  
Fred Nalugoda ◽  
...  

Abstract Background The impact of antiretroviral therapy (ART) initiation on the vaginal microbiome is unknown. This is of particular importance among women living in sub-Saharan Africa. Understanding this relationship could help elucidate if and how the host immune system interacts with the vaginal microbiome. Methods The vaginal microbiome of HIV-1/HSV-2-coinfected women (n = 92) in Uganda was evaluated from self-collected vaginal swabs 1 month pre-ART and at 4 and 6 months post–ART initiation. The vaginal microbiome was characterized by 16S rRNA gene-based sequencing and quantitative polymerase chain reaction. Vaginal community state types (CSTs) were identified using proportional abundance data. Changes in microbiome composition were assessed with permutational analyses of variance (PerMANOVA). Results Five vaginal CSTs were identified, which varied significantly by bacterial load (P &lt; .01): CST-1 was characterized by Lactobacillus iners, CST-2 by Gardnerella, CST-3 by Gardnerella and Prevotella, CST-4 by Lactobacillus crispatus, and CST-5 was highly diverse. Vaginal microbiome composition also did not change significantly after ART initiation (P = .985). Immune reconstitution after ART initiation did not affect vaginal microbiome CST assignment (P = .722) or individual-level changes in bacterial load (log response ratio [interquartile range], –0.50 [–2.75 to 0.38] vs –0.29 [–2.03 to 1.42]; P = .40). Conclusions The vaginal microbiome of HIV-infected women was not affected by the initiation of ART or immune reconstitution in this observational study. Further research is needed to explore the long-term effects of ART treatment on the vaginal microbiome.


Author(s):  
Syaza Y. Binte Abu Bakar ◽  
Malinda Salim ◽  
Andrew J. Clulow ◽  
Kevin Nicholas ◽  
Ben J. Boyd
Keyword(s):  

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Diana Escuder-Vieco ◽  
Juan M. Rodríguez ◽  
Irene Espinosa-Martos ◽  
Nieves Corzo ◽  
Antonia Montilla ◽  
...  

Holder pasteurization (HoP; 62.5 °C, 30 min) is commonly used to ensure the microbiological safety of donor human milk (DHM) but diminishes its nutritional properties. A high-temperature short-time (HTST) system was designed as an alternative for human milk banks. The objective of this study was to evaluate the effect of this HTST system on different nutrients and the bile salt stimulated lipase (BSSL) activity of DHM. DHM was processed in the HTST system and by standard HoP. Macronutrients were measured with a mid-infrared analyzer. Lactose, glucose, myo-inositol, vitamins and lipids were assayed using chromatographic techniques. BSSL activity was determined using a kit. The duration of HTST treatment had a greater influence on the nutrient composition of DHM than did the tested temperature. The lactose concentration and the percentage of phospholipids and PUFAs were higher in HTST-treated than in raw DHM, while the fat concentration and the percentage of monoacylglycerides and SFAs were lower. Other nutrients did not change after HTST processing. The retained BSSL activity was higher after short HTST treatment than that following HoP. Overall, HTST treatment resulted in better preservation of the nutritional quality of DHM than HoP because relevant thermosensitive components (phospholipids, PUFAs, and BSSL) were less affected.


Author(s):  
Parul Christian ◽  
Emily R Smith ◽  
Sun Eun Lee ◽  
Ashley J Vargas ◽  
Andrew A Bremer ◽  
...  

ABSTRACT Critical advancement is needed in the study of human milk as a biological system that intersects and interacts with myriad internal (maternal biology) and external (diet, environment, infections) factors and its plethora of influences on the developing infant. Human-milk composition and its resulting biological function is more than the sum of its parts. Our failure to fully understand this biology in a large part contributes to why the duration of exclusive breastfeeding remains an unsettled science (if not policy). Our current understanding of human-milk composition and its individual components and their functions fails to fully recognize the importance of the chronobiology and systems biology of human milk in the context of milk synthesis, optimal timing and duration of feeding, and period of lactation. The overly simplistic, but common, approach to analyzing single, mostly nutritive components of human milk is insufficient to understand the contribution of either individual components or the matrix within which they exist to both maternal and child health. There is a need for a shift in the conceptual approach to studying human milk to improve strategies and interventions to support better lactation, breastfeeding, and the full range of infant feeding practices, particularly for women and infants living in undernourished and infectious environments. Recent technological advances have led to a rising movement towards advancing the science of human-milk biology. Herein, we describe the rationale and critical need for unveiling the multifunctionality of the various nutritional, nonnutritional, immune, and biological signaling pathways of the components in human milk that drive system development and maturation, growth, and development in the very early postnatal period of life. We provide a vision and conceptual framework for a research strategy and agenda to change the field of human-milk biology with implications for global policy, innovation, and interventions.


Author(s):  
Manuela Cardoso ◽  
Daniel Virella ◽  
Israel Macedo ◽  
Diana Silva ◽  
Luís Pereira-da-Silva

Adequate nutrition of very preterm infants comprises fortification of human milk (HM), which helps to improve their nutrition and health. Standard HM fortification involves a fixed dose of a multi-nutrient HM fortifier, regardless of the composition of HM. This fortification method requires regular measurements of HM composition and has been suggested to be a more accurate fortification method. This observational study protocol is designed to assess whether the target HM fortification method (contemporary cohort) improves the energy and macronutrient intakes and the quality of growth of very preterm infants, compared with the previously used standard HM fortification (historical cohorts). In the contemporary cohort, a HM multi-nutrient fortifier and modular supplements of protein and fat are used for HM fortification, and the enteral nutrition recommendations of the European Society for Paediatric Gastroenterology Hepatology and Nutrition for preterm infants will be considered. For both cohorts, the composition of HM is assessed using the Miris Human Milk analyzer (Uppsala, Sweden). The quality of growth will be assessed by in-hospital weight, length, and head circumference growth velocities and a single measurement of adiposity (fat mass percentage and fat mass index) performed just after discharge, using the air displacement plethysmography method (Pea Pod, Cosmed, Italy). ClinicalTrials.gov registration number: NCT04400396.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 486 ◽  
Author(s):  
Elvira Verduci ◽  
Maria Lorella Giannì ◽  
Giulia Vizzari ◽  
Sara Vizzuso ◽  
Jacopo Cerasani ◽  
...  

The benefits of human milk for both mother and infant are widely acknowledged. Human milk could represent a link between maternal and offspring health. The triad mother-breast milk-infant is an interconnected system in which maternal diet and lifestyle might have effects on infant’s health outcome. This link could be in part explained by epigenetics, even if the underlining mechanisms have not been fully clarified yet. The aim of this paper is to update the association between maternal diet and human milk, pointing out how maternal diet and lifestyle could be associated with breast-milk composition, hence with offspring’s health outcome.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yacine Amar ◽  
Ilias Lagkouvardos ◽  
Rafaela L. Silva ◽  
Oluwaseun Ayodeji Ishola ◽  
Bärbel U. Foesel ◽  
...  

Abstract Background The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. Results We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. Conclusions The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document