scholarly journals Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2285
Author(s):  
Tomoki Takahashi ◽  
Hirofumi Fukudome ◽  
Hiroshi M. Ueno ◽  
Shiomi Watanabe-Matsuhashi ◽  
Taku Nakano ◽  
...  

The benefits of probiotic supplementation to lactating mothers on human milk cytokines are inconclusive. Thus, we performed a comprehensive open-label pilot trial analysis of 27 human milk cytokines in lactating women with allergies (one to three months postpartum) to determine the effect of supplementation with a mixture of new probiotic strains. Participants voluntarily joined the probiotic (n = 41) or no supplementation control (n = 19) groups. The probiotic group took three probiotic tablets (Lactobacillus casei LC5, Bifidobacterium longum BG7, and Bacillus coagulans SANK70258) daily for one to three months postpartum. Milk samples were collected at one, two, and three months postpartum, and cytokine levels were measured using multiplex assays. The effects were analyzed using multivariate regression models. Eleven cytokines showed a positive rate of over 50% in the milk samples throughout testing in both groups. The positive rates of IL-1 receptor antagonist and IL-7 changed significantly with lactation progression in logistic regression models after adjusting for time and supplementation, whereas rates of other cytokines showed no significant differences. The lactational change patterns of IL-10 concentrations differed significantly between the two groups. A short-term supplementation of probiotics affects human milk cytokine levels in lactating women with a possible placebo effect still existing. Future placebo-controlled studies are needed to support these results, based on the estimated sample sizes in this study.

Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3055 ◽  
Author(s):  
Silvia Sánchez-Hernández ◽  
Adelaida Esteban-Muñoz ◽  
Rafael Giménez-Martínez ◽  
María José Aguilar-Cordero ◽  
Beatriz Miralles-Buraglia ◽  
...  

Breastfeeding is the ideal way to provide infants with the nutrients they need for healthy growth and development. Milk composition changes throughout lactation, and fat is one of the most variable nutrients in human milk. The aim of this study was to determine the main differences between the fatty acid (FA) profile of human milk samples (colostrum, transitional, and mature milk group) and infant formulas. Human milk samples were provided by lactating women from Granada. Moreover, different commercial infant formulas were analyzed. FAs were determined using gas chromatography coupled with mass spectrometry. According to the results, oleic acid was the predominant monounsaturated fatty acid (41.93% in human milk and 43.53% in infant formulas), while palmitic acid was the most representative saturated fatty acid (20.88% in human milk and 23.09% in infant formulas). Significant differences were found between human milk groups and infant formulas, mainly in long-chain polyunsaturated FAs (LC-PUFAs). The content of araquidonic acid (AA) and docoxahexaenoic acid (DHA) was higher in human milk (0.51% and 0.39%, respectively) than in infant formulas (0.31% and 0.22%, respectively). Linoleic acid (LA) percentage (15.31%) in infant formulas was similar to that found in human milk (14.6%). However, α-linolenic acid (ALA) values were also much higher in infant formulas than in human milk (1.64% and 0.42%, respectively).


2013 ◽  
Vol 111 (4) ◽  
pp. 625-632 ◽  
Author(s):  
Takayuki Kubota ◽  
Naoki Shimojo ◽  
Ken Nonaka ◽  
Masakatsu Yamashita ◽  
Osamu Ohara ◽  
...  

The consumption of probiotics by pregnant and lactating women may prevent the onset of allergic disorders in their children by increasing the concentrations of immunoactive agents such as cytokines in breast milk. Prebiotics such as fructo-oligosaccharides (FOS) increase the number of beneficial organisms such as bifidobacteria. Thus, prebiotics may have an effect similar to that of probiotics. The objective of the present study was to carry out a comprehensive analysis of mRNA expression in human milk cells to identify changes in the concentrations of cytokines in breast milk after the consumption of FOS (4 g × 2 times/d) by pregnant and lactating women. The microarray analysis of human milk cells demonstrated that the expression levels of five genes in colostrum samples and fourteen genes in 1-month breast milk samples differed more than 3-fold between the FOS and control groups (sucrose group). The mRNA expression level of IL-27, a cytokine associated with immunoregulatory function, was significantly higher in 1-month breast milk samples obtained from the FOS group than in those obtained from the control group. In addition, the protein concentrations of IL-27 in colostrum and 1-month breast milk samples were significantly higher in the FOS group than in the control group. In conclusion, the consumption of FOS by pregnant and lactating women increases the production of IL-27 in breast milk. Future studies will address the association of this phenomenon with the onset of allergic disorders in children.


2021 ◽  
Author(s):  
Marta Selma-Royo ◽  
Christine Bauerl ◽  
Desiree Mena-Tudela ◽  
Laia Aguilar-Camprubi ◽  
Francisco Jose Perez-Cano ◽  
...  

Importance: Limited data are available on COVID-19 vaccine impact in lactating women. Objective: To evaluate the impact of different COVID-19 vaccines on specific anti-SARS-CoV-2 IgA and IgG levels in human milk. Design, Settings and Participants: In this prospective observational study in Spain, 75 lactating women from priority groups receiving vaccination against SARS-CoV-2 were included (January to April 2021). Human milk samples were collected at seven-time points. A group with confirmed SARS-CoV-2 infection (n=19) and a group of women from prepandemic time (n=13) were included. Exposure: mRNA vaccines (BNT162b2 and mRNA-1273) and adenovirus-vectored vaccine (ChAdOx1 nCoV-19). Main Outcome(s) and Measure(s): Presence of IgA and IgG against RBD SARS-CoV-2 in breast milk. Results: Seventy-five vaccinated lactating women [mean age, 34.9±3.7 years] of whom 96% were Caucasic and 92% were health care workers. A total of 417 milk samples were included and vaccine distribution was BioNTech/Pfizer (BNT162b2, n=30), Moderna (mRNA-1273, n=21), and AstraZeneca (ChAdOx1 nCoV-19, n=24). For each vaccine, 7 time points were collected from baseline up to 25 days after the 1st dose and same points were collected for mRNA vaccines 30 days after 2nd dose. A strong reactivity was observed for IgG and IgA after vaccination mainly after the 2nd dose. Presence and the persistence of specific SARS-CoV-2 antibodies in breast milk were dependent on the vaccine-type and, on previous virus exposure. High inter-variability was observed, being relevant for IgA antibodies. IgG levels were significantly higher than those observed in milk from COVID-19 women while IgA levels were lower. Women with previous COVID-19 increased the IgG levels after the 1st dose to a similar level observed in vaccinated women after the 2nd dose. Conclusions and Relevance: Breast milk from vaccinated women contains anti-SARS-CoV-2 IgA and IgG, with highest after the 2nd dose. Levels were dependent on vaccine type and previous exposure to SARS-CoV-2. Previous COVID-19 influenced the vaccine effect after a single dose, which could be especially relevant in the design of vaccination protocols . Further studies are warranted to demonstrate the potential protective role of these antibodies against COVID-19 in infants from vaccinated and infected mothers through breastfeeding.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1475
Author(s):  
Hannah G. Juncker ◽  
Sien J. Mulleners ◽  
Marit J. van Gils ◽  
Tom P. L. Bijl ◽  
Christianne J. M. de Groot ◽  
...  

SARS-CoV-2-specific antibodies are secreted into human milk of infected or vaccinated lactating women and might provide protection to the breastfed infant against COVID-19. Differences in antibody response after these types of exposure are unknown. In this longitudinal cohort study, we compared the antibody response in human milk following SARS-CoV-2 vaccination or infection. We analyzed 448 human milk samples of 28 lactating women vaccinated with the SARS-CoV-2 vaccine BNT162b2 as well as 82 human milk samples of 18 lactating women with a prior SARS-CoV-2 infection. The levels of SARS-CoV-2-specific IgA in human milk were determined over a period of 70 days both after vaccination and infection. The amount of SARS-CoV-2-specific IgA in human milk was similar after SARS-CoV-2 vaccination and infection. After infection, the variability in IgA levels was higher than after vaccination. Two participants with detectable IgA prior to vaccination were analyzed separately and showed higher IgA levels following vaccination compared to both groups. In conclusion, breastfed infants of mothers who have been vaccinated with the BNT162b2 vaccine receive human milk with similar amounts of SARS-CoV-2-specific antibodies compared to infants of previously infected mothers.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Gabriele Andrea Lugli ◽  
Sabrina Duranti ◽  
Christian Milani ◽  
Leonardo Mancabelli ◽  
Francesca Turroni ◽  
...  

ABSTRACT Human milk is known to carry its own microbiota, of which the precise origin remains obscure. Breastfeeding allows mother-to-baby transmission of microorganisms as well as the transfer of many other milk components, such as human milk oligosaccharides (HMOs), which act as metabolizable substrates for particular bacteria, such as bifidobacteria, residing in infant intestinal tract. In the current study, we report the HMO composition of 249 human milk samples, in 163 of which we quantified the abundance of members of the Bifidobacterium genus using a combination of metagenomic and flow cytometric approaches. Metagenomic data allowed us to identify four clusters dominated by Bifidobacterium adolescentis and Bifidobacterium pseudolongum, Bifidobacterium crudilactis or Bifidobacterium dentium, as well as a cluster represented by a heterogeneous mix of bifidobacterial species such as Bifidobacterium breve and Bifidobacterium longum. Furthermore, in vitro growth assays on HMOs coupled with in silico glycobiome analyses allowed us to elucidate that members of the Bifidobacterium bifidum and B. breve species exhibit the greatest ability to degrade and grow on HMOs. Altogether, these findings indicate that the bifidobacterial component of the human milk microbiota is not strictly correlated with their ability to metabolize HMOs.


2021 ◽  
pp. 089033442110271
Author(s):  
Hannah G. Juncker ◽  
Sien J. Mulleners ◽  
Marit J. van Gils ◽  
Christianne J. M. de Groot ◽  
Dasja Pajkrt ◽  
...  

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are being administered around the world; however, lactating women were excluded from SARS-CoV-2 vaccine trials. Therefore, knowledge about the effect of vaccination in this specific group is limited. This information is essential to empower lactating women to make a well-informed decision on their choice for vaccination. After natural infection, SARS-CoV-2 specific antibodies are present in human milk, which might offer protection for her newborn. The dynamics of these antibodies in human milk following vaccination remain to be elucidated. Research Aim To determine the effect of vaccination with BNT162b2 on the levels of SARS-CoV-2 specific IgA in human milk. Methods In this prospective longitudinal study, we included lactating women who received the BNT162b2 vaccine. Human milk samples were collected prior to vaccination and 3, 5, 7, 9, 11, 13, and 15 days after both vaccine doses. Samples were analyzed using enzyme-linked immunosorbent assay against the spike protein of SARS-CoV-2. Results In total, 366 human milk samples from 26 lactating women were analyzed. A biphasic response was observed, with SARS-CoV-2 specific immunoglobulin A (IgA) starting to increase between day 5 and 7 after the first dose of the vaccine. After the second dose, an accelerated IgA antibody response was observed. Conclusion After vaccination with the mRNA-based BNT162b2 vaccine, a SARS-CoV-2 specific antibody response was observed in human milk. The presence of SARS-CoV-2 specific IgA after vaccination is important as antibodies are transferred via human milk, and thereby might provide protection to infants against COVID-19.


BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e055028
Author(s):  
Keisuke Nojiri ◽  
Satoshi Higurashi ◽  
Tomoki Takahashi ◽  
Yuta Tsujimori ◽  
Shunjiro Kobayashi ◽  
...  

PurposeThe Japanese Human Milk Study, a longitudinal prospective cohort study, was set up to clarify how maternal health, nutritional status, lifestyle and sociodemographic and economic factors affect breastfeeding practices and human milk composition. This would eventually determine factors affecting the growth and development of infants and children.ParticipantsA total of 1210 Japanese lactating women who satisfied the inclusion criteria, were invited across the country at various participating sites, between 2014 and 2019. Finally a total of 1122 women were enrolled in this study.Findings to dateAmong 1122 eligible participants, mean age at delivery was 31.2 (SD 4.4) years and mean prepregnancy BMI was 20.8 (SD 2.7). Among these women, 35% were previously nulliparous and 77.7% had college, university or higher education. The mean gestational period was 39.0 (SD 1.3) weeks. Caesarean section was reported among 11.9%; mean infant birth weight was 3082 (SD 360) g. Of the infants, 53.7% were male. Overall, our participants appeared to be healthier than the general population in Japan. Analyses of the 1079 eligible human milk samples obtained at the first and second months postpartum showed the following composition: carbohydrate, 8.13 (SD 0.32) g/100 mL; fat, 3.77 (SD 1.29) g/100 mL; and crude protein, 1.20 (SD 0.23) g/100 mL. We also analysed osteopontin, fatty acid, vitamin D and phospholipid levels in limited subcohorts of the samples.Future plansFollow-up surveys will be conducted to obtain milk samples every 2 months for 12 months and to investigate mother and child health until the children reach 5 years of age. These will be completed in 2024. We plan to longitudinally analyse the composition of macronutrients and various bioactive factors in human milk and investigate the lifestyle and environmental factors that influence breastfeeding practices, maternal and child health, and child development.Trial registration numberUMIN000015494; pre-results.


Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 173 ◽  
Author(s):  
Līva Aumeistere ◽  
Inga Ciproviča ◽  
Dace Zavadska ◽  
Juris Andersons ◽  
Viktors Volkovs ◽  
...  

Background and objectives: Many studies indicate that the maternal diet is an important factor affecting human milk composition. Human milk composition among lactating women in Latvia, as well as the maternal diet during lactation, has not been sufficiently studied. The aim of this research was to assess dietary habits and macronutrient intake among lactating women in Latvia and to examine the effect of diet on human milk composition. Materials and Methods: Research was conducted between November 2016 and December 2017. Mature human milk samples (n = 61) along with a 72h food diary, a food frequency questionnaire (FFQ), and a questionnaire about maternal and infant characteristics were obtained from voluntary women who were recruited via an invitation published in a social media member group for nursing mothers. Fat content in human milk was determined by LVS ISO 2446:2008, protein content was determined by LVS EN ISO 8968-1:2014, lactose was determined by ISO 22662:2007, and the fatty acid profile was analyzed using gas chromatography. Dietary data were evaluated using the Finnish food composition database Fineli, release 19 (3 March 2018). Results: Median values for fat, protein, and lactose in mature human milk were 4.40%, 1.08%, and 6.52%, respectively. Predominant fatty acids in human milk were oleic acid (C18:1 n9c), palmitic acid (C16:0), and linoleic acid (C18:2 n6c) at 34.60%, 24.00%, and 11.00% of total fatty acids, respectively. The trans elaidic acid (C18:1 n9t) level was <0.10% in all human milk samples. Significant, positive associations (p < 0.05) were found between maternal dietary intake of linoleic, α-linolenic, docosahexaenoic, total cis-monounsaturated, total cis-polyunsaturated, and total n-6 and n-3 polyunsaturated fatty acids, the ratio of n-6/n-3, and the level of these fatty acids in human milk. Total energy and carbohydrate intake among participants were lower, but total fat, saturated fat, and sugar intake were higher than recommended. Protein, linoleic acid, and α-linolenic acid intake were adequate, but docosahexaenoic acid intake was noticeably lower than recommended. Women should be supported with information regarding their nutritional needs during lactation and the possible impact of diet on human milk composition. Conclusion: Macronutrient (fat, protein, and lactose) content in human milk is not affected by maternal diet. Conversely, the human milk fatty acid profile is affected by the immediate diet consumed by the mother. Habitual dietary habits can also impact the fatty acid profile of human milk.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1081 ◽  
Author(s):  
Marina Padilha ◽  
Asker Brejnrod ◽  
Niels Banhos Danneskiold-Samsøe ◽  
Christian Hoffmann ◽  
Julia de Melo Iaucci ◽  
...  

Maternal bacteria are shared with infants via breastfeeding. Prebiotics modulate the gut microbiota, promoting health benefits. We investigated whether the maternal diet supplementation with a prebiotic (fructooligosaccharides, FOS) could influence the milk microbiota. Twenty-eight lactating women received 4.5 g of fructooligosaccharides + 2 g of maltodextrin (FOS group) and twenty-five received 2 g of maltodextrin (placebo group) for 20 days. Breast-milk samples were taken before and after the intervention. The DNA from samples was used for 16S rRNA sequencing. No statistical differences between the groups were found for the bacterial genera after the intervention. However, the distances of the trajectories covered by paired samples from the beginning to the end of the supplementation were higher for the FOS group (p = 0.0007) indicating greater changes in milk microbiota compared to the control group. Linear regression models suggested that the maternal age influenced the response for FOS supplementation (p = 0.02). Interestingly, the pattern of changes to genus abundance upon supplementation was not shared between mothers. We demonstrated that manipulating the human milk microbiota through prebiotics is possible, and the maternal age can affect this response.


1994 ◽  
Vol 13 (5) ◽  
pp. 299-302 ◽  
Author(s):  
H. Basri üstünbas ◽  
M. Adnan Öztürk ◽  
E. Hasanoglu ◽  
M. Dogan

In this study: dichlorodiphenyltrichloroethane (DDT) and its metabolites [DDT + dichlorodiphenyl-dichloroethylene (DDE)], BHC (HCH) and their main isomers such as alpha, beta, gamma BHC, aldrin and its metabolite dieldrin, heptachloride, heptachloride epoxide, were investigated in 51 samples of breast milk of 51 lactating women during 1988. The ages of the mothers, who were working in agriculture, ranged from 17 to 33 y (mean 24.2 y). The concentrations of hexachlorobenzene (HCB), alpha BHC, beta BHC, gamma BHC, heptachloride, aldrin, heptachloride epoxide, pp'DDE, dieldrin, op'DDT, pp'DDT were found as 84± 23, 96± 20, 522± 120, 156± 20, 198± 130, 47± 9, 11 ± 4, 2389± 280, 6.7± 3, 70± 12, 410± 60 ?g kg-1 milk, fat, respectively, measured by gas chromatography (GC) method. The concentrations of chlorinated pesticides in human milk samples from Kayseri were compared with similar data obtained from other countries. The amounts of total BHC and aldrin derivatives were below the acceptable daily intake (ADI), whereas the amount of total DDT derivates was above, of the World Health Organization (WHO).


Sign in / Sign up

Export Citation Format

Share Document