scholarly journals Irritable Bowel Syndrome, Depression, and Neurodegeneration: A Bidirectional Communication from Gut to Brain

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3061
Author(s):  
Muhammad Nazirul Mubin Aziz ◽  
Jaya Kumar ◽  
Khairul Najmi Muhammad Nawawi ◽  
Raja Affendi Raja Ali ◽  
Norfilza M. Mokhtar

Patients with irritable bowel syndrome (IBS) are increasingly presenting with a wide range of neuropsychiatric symptoms, such as deterioration in gastroenteric physiology, including visceral hypersensitivity, altered intestinal membrane permeability, and gastrointestinal motor dysfunction. Functional imaging of IBS patients has revealed several abnormalities in various brain regions, such as significant activation of amygdala, thinning of insular and anterior cingulate cortex, and increase in hypothalamic gray matter, which results in poor psychiatric and cognitive outcomes. Interrelations between the enteric and central events in IBS-related gastrointestinal, neurological, and psychiatric pathologies have compelled researchers to study the gut-brain axis—a bidirectional communication that maintains the homeostasis of the gastrointestinal and central nervous system with gut microbiota as the protagonist. Thus, it can be disrupted by any alteration owing to the gut dysbiosis or loss of diversity in microbial composition. Available evidence indicates that the use of probiotics as a part of a balanced diet is effective in the management of IBS and IBS-associated neurodegenerative and psychiatric comorbidities. In this review, we delineate the pathogenesis and complications of IBS from gastrointestinal and neuropsychiatric standpoints while also discussing the neurodegenerative events in enteric and central nervous systems of IBS patients and the therapeutic potential of gut microbiota-based therapy established on clinical and preclinical data.

2018 ◽  
Vol 25 (32) ◽  
pp. 3930-3952 ◽  
Author(s):  
Roberto Russo ◽  
Claudia Cristiano ◽  
Carmen Avagliano ◽  
Carmen De Caro ◽  
Giovanna La Rana ◽  
...  

The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis. This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitaryadrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer’s Disease etc. Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes. Their effective role has been studied in inflammation, acute and chronic pain, obesity and central nervous system diseases. A possible correlation has been shown between these lipids and gut microbiota through different mechanisms. Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in the rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models. In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in the central nervous system diseases.


Author(s):  
Kiangyada Yaklai ◽  
Sintip Pattanakuhar ◽  
Nipon Chattipakorn ◽  
Siriporn C. Chattipakorn

Irritable bowel syndrome (IBS) is a chronic dysfunction of the gastrointestinal tract, commonly characterized by abdominal pain or abdominal discomfort. These symptoms can substantially reduce the quality of life and work productivity of the patients. The exact pathogenesis of IBS remains unclear, as it has become apparent that multiple pathways are activated in the condition, including inflammation, immunology, neurology and psychology. Recent evidence has shown that symptoms in IBS are related to the dysfunction of the nervous system, particularly the viscerosomatic pathway, through immune-to-brain communication. The potential link between brain–gut relationships is gut microbiota. The management of IBS mostly focuses on symptomatically treating the patients. There are a wide range of standard treatments, including pharmacological to psychological interventions which are effective in some patients. Therefore, a combination of therapies including both standard and complimentary treatments, including Traditional Chinese Medicine (TCM) such as acupuncture, have been used in treating IBS patients. Several in vivo and clinical studies have demonstrated the efficacy of acupuncture in treating IBS. Increasing attention has been paid to research regarding the action mechanisms of acupuncture for IBS. This paper summarizes and discusses the possible mechanisms associated with acupuncture on the pathophysiology of IBS, including gastrointestinal (GI) motility, visceral hypersensitivity, the immune system, neurotransmitters, and the brain–gut axis. The results fromin vivo and clinical studies have been included. In addition, the effects of acupuncture on gut microbiota in IBS are included and any contradictory findings are deliberated.


2020 ◽  
pp. 1-14
Author(s):  
S. Holster ◽  
D. Repsilber ◽  
D. Geng ◽  
T. Hyötyläinen ◽  
A. Salonen ◽  
...  

Faecal microbiota transfer (FMT) consists of the infusion of donor faecal material into the intestine of a patient with the aim to restore a disturbed gut microbiota. In this study, it was investigated whether FMT has an effect on faecal microbial composition, its functional capacity, faecal metabolite profiles and their interactions in 16 irritable bowel syndrome (IBS) patients. Faecal samples from eight different time points before and until six months after allogenic FMT (faecal material from a healthy donor) as well as autologous FMT (own faecal material) were analysed by 16S RNA gene amplicon sequencing and gas chromatography coupled to mass spectrometry (GS-MS). The results showed that the allogenic FMT resulted in alterations in the microbial composition that were detectable up to six months, whereas after autologous FMT this was not the case. Similar results were found for the functional profiles, which were predicted from the phylogenetic sequencing data. While both allogenic FMT as well as autologous FMT did not have an effect on the faecal metabolites measured in this study, correlations between the microbial composition and the metabolites showed that the microbe-metabolite interactions seemed to be disrupted after allogenic FMT compared to autologous FMT. This shows that FMT can lead to altered interactions between the gut microbiota and its metabolites in IBS patients. Further research should investigate if and how this affects efficacy of FMT treatments.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tingting Su ◽  
Rongbei Liu ◽  
Allen Lee ◽  
Yanqin Long ◽  
Lijun Du ◽  
...  

Alterations in gut microbiota are postulated to be an etiologic factor in the pathogenesis of irritable bowel syndrome (IBS). To determine whether IBS patients in China exhibited differences in their gut microbial composition, fecal samples were collected from diarrhea-predominant IBS (IBS-D) and healthy controls and evaluated by 16S ribosomal RNA gene sequence and quantitative real-time PCR. A mouse model of postinfectious IBS (PI-IBS) was established to determine whether the altered gut microbiota was associated with increased visceral hypersensitivity. The results indicated that there were significant differences in the bacterial community profiles between IBS-D patients and healthy controls. Prevotella was more abundant in fecal samples from IBS-D patients compared with healthy controls (p<0.05). Meanwhile, there were significant reductions in the quantity of Bacteroides, Bifidobacteria, and Lactobacillus in IBS-D patients compared with healthy controls (p<0.05). Animal models similarly showed an increased abundance of Prevotella in fecal samples compared with control mice (p<0.05). Finally, after the PI-IBS mice were cohoused with control mice, both the relative abundance of Prevotella and visceral hypersensitivity of PI-IBS mice were decreased. In conclusion, the altered intestinal microbiota is associated with increased visceral hypersensitivity and enterotype enriched with Prevotella may be positively associated with high risk of IBS-D.


2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Zahra A. Barandouzi ◽  
Joochul Lee ◽  
Kendra Maas ◽  
Angela R. Starkweather ◽  
Xiaomei S. Cong

The interplay between diet and gut microbiota has gained interest as a potential contributor in pathophysiology of irritable bowel syndrome (IBS). The purpose of this study was to compare food components and gut microbiota patterns between IBS patients and healthy controls (HC) as well as to explore the associations of food components and microbiota profiles. A cross-sectional study was conducted with 80 young adults with IBS and 21 HC recruited. The food frequency questionnaire was used to measure food components. Fecal samples were collected and profiled by 16S rRNA Illumina sequencing. Food components were similar in both IBS and HC groups, except in caffeine consumption. Higher alpha diversity indices and altered gut microbiota were observed in IBS compared to the HC. A negative correlation existed between total observed species and caffeine intake in the HC, and a positive correlation between alpha diversity indices and dietary fiber in the IBS group. Higher alpha diversity and gut microbiota alteration were found in IBS people who consumed caffeine more than 400 mg/d. Moreover, high microbial diversity and alteration of gut microbiota composition in IBS people with high caffeine consumption may be a clue toward the effects of caffeine on the gut microbiome pattern, which warrants further study.


2021 ◽  
Author(s):  
Yang Liu ◽  
Wei Xiao ◽  
Leilei Yu ◽  
Fengwei Tian ◽  
Gang Wang ◽  
...  

Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate...


2021 ◽  
Vol 33 (3) ◽  
Author(s):  
Lars Wilmes ◽  
James M. Collins ◽  
Kenneth J. O'Riordan ◽  
Siobhain M. O’Mahony ◽  
John F. Cryan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


Sign in / Sign up

Export Citation Format

Share Document