scholarly journals Water Kefir and Derived Pasteurized Beverages Modulate Gut Microbiota, Intestinal Permeability and Cytokine Production In Vitro

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3897
Author(s):  
Marta Calatayud ◽  
Rosa Aragao Börner ◽  
Jonas Ghyselinck ◽  
Lynn Verstrepen ◽  
Jelle De Medts ◽  
...  

Fermentation is an ancient food preservation process, and fermented products have been traditionally consumed in different cultures worldwide over the years. The interplay between human gut microbiota, diet and host health is widely recognized. Diet is one of the main factors modulating gut microbiota potentially with beneficial effects on human health. Fermented dairy products have received much attention, but other sources of probiotic delivery through food received far less attention. In this research, a combination of in vitro tools mimicking colonic fermentation and the intestinal epithelium have been applied to study the effect of different pasteurized and non-pasteurized water kefir products on gut microbiota, epithelial barrier function and immunomodulation. Water kefir increased beneficial short-chain fatty acid production at the microbial level, reduced detrimental proteolytic fermentation compounds and increased Bifidobacterium genus abundance. The observed benefits are enhanced by pasteurization. Pasteurized products also had a significant effect at the host level, improving inflammation-induced intestinal epithelial barrier disruption and increasing IL-10 and IL-1β compared to the control condition. Our data support the potential health benefits of water kefir and demonstrate that pasteurization, performed to prolong shelf life and stability of the product, also enhanced these benefits.

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3249
Author(s):  
Marta Calatayud ◽  
Lynn Verstrepen ◽  
Jonas Ghyselinck ◽  
Pieter Van den Abbeele ◽  
Massimo Marzorati ◽  
...  

The human gut microbiota has been linked to the health status of the host. Modulation of human gut microbiota through pro- and prebiotic interventions has yielded promising results; however, the effect of novel prebiotics, such as chitin–glucan, on gut microbiota–host interplay is still not fully characterized. We assessed the effect of chitin–glucan (CG) and chitin–glucan plus Bifidobacterium breve (CGB) on human gut microbiota from the luminal and mucosal environments in vitro. Further, we tested the effect of filter-sterilized fecal supernatants from CG and CGB fermentation for protective effects on inflammation-induced barrier disruption and cytokine production using a co-culture of enterocytes and macrophage-like cells. Overall, CG and CGB promote health-beneficial short-chain fatty acid production and shift human gut microbiota composition, with a consistent effect increasing Roseburia spp. and butyrate producing-bacteria. In two of three donors, CG and CGB also stimulated Faecalibacterium prausniitzi. Specific colonization of B. breve was observed in the lumen and mucosal compartment; however, no synergy was detected for different endpoints when comparing CGB and CG. Both treatments included a significant improvement of inflammation-disrupted epithelial barrier and shifts on cytokine production, especially by consistent increase in the immunomodulatory cytokines IL10 and IL6.


2021 ◽  
Vol 8 ◽  
Author(s):  
John J. Miklavcic ◽  
Qun Li ◽  
Jordan Skolnick ◽  
Alan B. R. Thomson ◽  
Vera C. Mazurak ◽  
...  

Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health.Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. Gut barrier integrity was assessed by electron microscopy, epithelial barrier function was examined by measuring transepithelial electric resistance, and content of HBD-2, IL-23, NF-κB, and sPLA2 was assessed by ELISA.Results: Ganglioside attenuated the decrease in integrity of tight junctions induced by pro-inflammatory stimuli and improved epithelial barrier function (P < 0.05). Ganglioside decreased the basolateral secretion of sPLA2 (P ≤ 0.05), lowered HBD-2 and IL-23 levels (P ≤ 0.05), and inhibited NF-κB activation (P ≤ 0.05).Conclusions: In summary, the present study indicates that ganglioside GD3 improves intestinal integrity by altering sPLA2 trafficking, and the production of pro-inflammatory mediators is mitigated by decreasing assembly of the NF-κB complex. Dietary gangliosides may have promising potential beneficial effects in IBD as decreased inflammatory signaling, improved intestinal integrity, and maintenance of epithelial barrier function have been demonstrated in vitro.


2018 ◽  
Vol 19 (10) ◽  
pp. 3097 ◽  
Author(s):  
Sophie Fehlbaum ◽  
Kevin Prudence ◽  
Jasper Kieboom ◽  
Margreet Heerikhuisen ◽  
Tim van den Broek ◽  
...  

Recently, the concept of prebiotics has been revisited to expand beyond non-digestible oligosaccharides, and the requirements for selective stimulation were extended to include microbial groups other than, and additional to, bifidobacteria and lactobacilli. Here, the gut microbiota-modulating effects of well-known and novel prebiotics were studied. An in vitro fermentation screening platform (i-screen) was inoculated with adult fecal microbiota, exposed to different dietary fibers that had a range of concentrations (inulin, alpha-linked galacto-oligosaccharides (alpha-GOS), beta-linked GOS, xylo-oligosaccharides (XOS) from corn cobs and high-fiber sugar cane, and beta-glucan from oats), and compared to a positive fructo-oligosaccharide (FOS) control and a negative control (no fiber addition). All dietary fibers displayed prebiotic activity, with beta-glucan showing more distinct effects on the microbial composition and metabolism compared to the other fibers. Beta-glucan induced the growth of Prevotella and Roseburia with a concomitant increase in propionate production. Inulin and both forms of GOS and XOS had a strong bifidogenic effect on the microbial composition. A dose-response effect was observed for butyrate when exposed to beta-glucan and inulin. The findings of this study support the potential for alpha-GOS, XOS, and oat beta-glucan to serve as novel prebiotics, due to their association with the positive shifts in microbiome composition and short-chain fatty acid production that point to potential health benefits.


2008 ◽  
Vol 76 (8) ◽  
pp. 3390-3398 ◽  
Author(s):  
Jennifer M. Lamb-Rosteski ◽  
Lisa D. Kalischuk ◽  
G. Douglas Inglis ◽  
Andre G. Buret

ABSTRACT Campylobacter jejuni is a leading cause of acute bacterial enteritis in humans. Poultry serves as a major reservoir of C. jejuni and is thought to act as a principal vehicle of transmission to humans. Epidermal growth factor (EGF) is a small amino acid peptide that exerts a broad range of activities on the intestinal epithelium. The aims of this study were to determine the effect of EGF on C. jejuni intestinal colonization in newly hatched chicks and to characterize its effects on C. jejuni-induced intestinal epithelial barrier disruption. White Leghorn chicks were treated with EGF daily, starting 1 day prior to C. jejuni infection, and were compared to control and C. jejuni-infected, EGF-treated chicks. Infected chicks shed C. jejuni in their feces throughout the study period. C. jejuni colonized the small intestine and cecum, disseminated to extraintestinal organs, and caused jejunal villus atrophy. EGF reduced jejunal colonization and dissemination of C. jejuni to the liver and spleen. In EGF-treated C. jejuni-infected chicks, villus height was not significantly different from that in untreated C. jejuni-infected chicks or controls. In vitro, C. jejuni attached to and invaded intestinal epithelial cells, disrupted tight junctional claudin-4, and increased transepithelial permeability. C. jejuni also promoted the translocation of noninvasive Escherichia coli C25. These C. jejuni-induced epithelial abnormalities were abolished by pretreatment with EGF, and the effect was dependent upon activation of the EGF receptor. These findings highlight EGF's ability to alter colonization of C. jejuni in the intestinal tract and to protect against pathogen-induced barrier defects.


2003 ◽  
Vol 73 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Cassidy

Interest in the physiological role of bioactive compounds present in plants has increased dramatically over the last decade. Of particular interest in relation to human health are the class of compounds known as the phytoestrogens, which embody several groups of non-steroidal oestrogens including isoflavones & lignans that are widely distributed within the plant kingdom. Data from animal and in vitro studies provide plausible mechanisms to explain how phytoestrogens may influence hormone dependent states, but although the clinical application of diets rich in these oestrogen mimics is in its infancy, data from preliminary studies suggest potential beneficial effects of importance to health. Phytoestrogens are strikingly similar in chemical structure to the mammalian oestrogen, oestradiol, and bind to oestrogen receptors (ER) with a preference for the more recently described ERb. This suggests that these compounds may exert tissue specific effects. Numerous other biological effects independent of the ER (e.g. antioxidant capacity, antiproliferative and antiangiogenic effects) have been ascribed to these compounds. Whether phytoestrogens have any biological activity in humans, either hormonal or non hormonal is a contentious issue and there is currently a paucity of data on human exposure. Much of the available data on the absorption and metabolism of dietary phytoestrogens is of a qualitative nature; it is known that dietary phytoestrogens are metabolised by intestinal bacteria, absorbed, conjugated in the liver, circulated in plasma and excreted in urine. Recent studies have addressed quantitatively what happens to isoflavones following ingestion – with pure compound and stable isotope data to compliment recent pharmacokinetic data for soy foods. The limited studies conducted so far in humans clearly confirm that soya isoflavones can exert hormonal effects. These effects may be of benefit in the prevention of many of the common diseases observed in Western populations (such as breast cancer, prostate cancer, menopausal symptoms, osteoporosis) where the diet is typically devoid of these biologically active naturally occurring compounds. However since biological effects are dependent on many factors including dose, duration of use, protein binding affinity, individual metabolism and intrinsic oestrogenic state, further clinical studies are necessary to determine the potential health effects of these compounds in specific population groups. However we currently know little about age related differences in exposure to these compounds and there are few guidelines on optimal dose for specific health outcomes.


Author(s):  
Leonardo Mancabelli ◽  
Walter Mancino ◽  
Gabriele Andrea Lugli ◽  
Chiara Argentini ◽  
Giulia Longhi ◽  
...  

Amoxicillin-Clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding six months. Moreover, we evaluated AMC sensitivity by Minimal Inhibitory Concentration (MIC) test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains, which exhibit a high level of AMC insensitivity, and which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch-cultures. Importance Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, also affecting the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genome revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in-vitro experiments revealed that one strain, i.e. B. breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


2019 ◽  
Author(s):  
Bethany M. Young ◽  
Keerthana Shankar ◽  
Cindy K. Tho ◽  
Amanda R. Pellegrino ◽  
Rebecca L. Heise

ABSTRACTDecellularized tissues offer a unique tool for developing regenerative biomaterials orin vitroplatforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen, fibronectin, laminin, and dECM in varying combinations as anin vitrocoating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E- cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings reveal potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds or edema related pathologies.


2013 ◽  
Vol 304 (5) ◽  
pp. G479-G489 ◽  
Author(s):  
Katherine R. Groschwitz ◽  
David Wu ◽  
Heather Osterfeld ◽  
Richard Ahrens ◽  
Simon P. Hogan

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.


Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1488 ◽  
Author(s):  
Anna Mas-Capdevila ◽  
Joan Teichenne ◽  
Cristina Domenech-Coca ◽  
Antoni Caimari ◽  
Josep M Del Bas ◽  
...  

Recently, hesperidin, a flavonone mainly present in citrus fruits, has emerged as a new potential therapeutic agent able to modulate several cardiovascular diseases (CVDs) risk factors. Animal and in vitro studies demonstrate beneficial effects of hesperidin and its derived compounds on CVD risk factors. Thus, hesperidin has shown glucose-lowering and anti-inflammatory properties in diabetic models, dyslipidemia-, atherosclerosis-, and obesity-preventing effects in CVDs and obese models, and antihypertensive and antioxidant effects in hypertensive models. However, there is still controversy about whether hesperidin could contribute to ameliorate glucose homeostasis, lipid profile, adiposity, and blood pressure in humans, as evidenced by several clinical trials reporting no effects of treatments with this flavanone or with orange juice on these cardiovascular parameters. In this review, we focus on hesperidin’s beneficial effects on CVD risk factors, paying special attention to the high interindividual variability in response to hesperidin-based acute and chronic interventions, which can be partly attributed to differences in gut microbiota. Based on the current evidence, we suggest that some of hesperidin’s contradictory effects in human trials are partly due to the interindividual hesperidin variability in its bioavailability, which in turn is highly dependent on the α-rhamnosidase activity and gut microbiota composition.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 102-108 ◽  
Author(s):  
Norio Nishii ◽  
Tadayuki Oshima ◽  
Min Li ◽  
Hirotsugu Eda ◽  
Kumiko Nakamura ◽  
...  

Introduction: Lubiprostone, a chloride channel activator, is said to reduce epithelial permeability. However, whether lubiprostone has a direct effect on the epithelial barrier function and how it modulates the intestinal barrier function remain unknown. Therefore, the effects of lubiprostone on intestinal barrier function were evaluated in vitro. Methods: Caco-2 cells were used to assess the intestinal barrier function. To examine the expression of claudins, immunoblotting was performed with specific antibodies. The effects of lubiprostone on cytokines (IFNγ, IL-6, and IL-1β) and aspirin-induced epithelial barrier disruption were assessed by transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) labeled-dextran permeability. Results: IFNγ, IL-6, IL-1β, and aspirin significantly decreased TEER and increased epithelial permeability. Lubiprostone significantly improved the IFNγ-induced decrease in TEER in a dose-dependent manner. Lubiprostone significantly reduced the IFNγ-induced increase in FITC labeled-dextran permeability. The changes induced by IL-6, IL-1β, and aspirin were not affected by lubiprostone. The expression of claudin-1, but not claudin-3, claudin-4, occludin, and ZO-1 was significantly increased by lubiprostone. Conclusion: Lubiprostone significantly improved the IFNγ-induced decrease in TEER and increase in FITC labeled-dextran permeability. Lubiprostone increased the expression of claudin-1, and this increase may be related to the effect of lubiprostone on the epithelial barrier function.


Sign in / Sign up

Export Citation Format

Share Document