scholarly journals Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved ADCs—A Necessity for Future ADC Research and Development

2021 ◽  
Vol 14 (7) ◽  
pp. 674
Author(s):  
Manar Hammood ◽  
Andrew W. Craig ◽  
Jeffrey V. Leyton

Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.

Author(s):  
Alessandro Tubita ◽  
Ignazia Tusa ◽  
Elisabetta Rovida

Molecularly tailored therapies have opened a new era, chronic myeloid leukemia being the ideal example, in the treatment of cancer. However, available therapeutic options are still unsatisfactory in many types of cancer, and often fail due to the occurrence of resistance mechanisms. With regard to small-molecule compounds targeting the components of the Mitogen-Activated Protein Kinase (MAPK) cascade RAF-MEK1/2-ERK1/2, these drugs may result ineffective as a consequence of the activation of compensatory pro-survival/proliferative signals, including receptor tyrosine kinases, PI3K, as well as other components of the MAPK family such as TPL2/COT. The MAPK ERK5 has been identified as a key signaling molecule in the biology of several types of cancer. In this review, we report pieces of evidence regarding the activation of the MEK5-ERK5 pathway as a resistance mechanism to RAF-MEK1/2-ERK1/2 inhibitors. We also highlight the known and possible mechanisms underlying the cross-talks between the ERK1/2 and the ERK5 pathways, the characterization of which is of great importance to maximize, in the future, the impact of RAF-MEK1/2-ERK1/2 targeting. Finally, we emphasize the need of developing additional therapeutically relevant MEK5-ERK5 inhibitors to be used for combined treatments, thus preventing the onset of resistance to cancer therapies relying on RAF-MEK1/2-ERK1/2 inhibitors.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 394 ◽  
Author(s):  
Denis Collins ◽  
Birgit Bossenmaier ◽  
Gwendlyn Kollmorgen ◽  
Gerhard Niederfellner

Antibody-drug conjugates (ADCs) combine the tumor selectivity of antibodies with the potency of cytotoxic small molecules thereby constituting antibody-mediated chemotherapy. As this inherently limits the adverse effects of the chemotherapeutic, such approaches are heavily pursued by pharma and biotech companies and have resulted in four FDA (Food and Drug Administration)-approved ADCs. However, as with other cancer therapies, durable responses are limited by the fact that under cell stress exerted by these drugs, tumors can acquire mechanisms of escape. Resistance can develop against the antibody component of ADCs by down-regulation/mutation of the targeted cell surface antigen or against payload toxicity by up-regulation of drug efflux transporters. Unique resistance mechanisms specific for the mode of action of ADCs have also emerged, like altered internalization or cell surface recycling of the targeted tumor antigen, changes in the intracellular routing or processing of ADCs, and impaired release of the toxic payload into the cytosol. These evasive changes are tailored to the specific nature and interplay of the three ADC constituents: the antibody, the linker, and the payload. Hence, they do not necessarily endow broad resistance to ADC therapy. This review summarizes preclinical and clinical findings that shed light on the mechanisms of acquired resistance to ADC therapies.


2020 ◽  
Vol 50 (6) ◽  
pp. 466-480
Author(s):  
John Coutsouvelis ◽  
Jim Siderov ◽  
Amanda Y. Tey ◽  
Hadley D. Bortz ◽  
Shaun R. O’Connor ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1221
Author(s):  
Raquel Lopes ◽  
Bruna Velosa Ferreira ◽  
Joana Caetano ◽  
Filipa Barahona ◽  
Emilie Arnault Carneiro ◽  
...  

Despite the improvement of patient’s outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody–drug conjugates or bispecific antibodies broadened the possibility of improving patients’ survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.


Stresses ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 30-47
Author(s):  
Maria Mortoglou ◽  
David Wallace ◽  
Aleksandra Buha Buha Djordjevic ◽  
Vladimir Djordjevic ◽  
E. Damla Arisan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.


Author(s):  
Alba Ruedas-López ◽  
Isaac Alonso García ◽  
Cristina Lasarte-Monterrubio ◽  
Paula Guijarro-Sánchez ◽  
Eva Gato ◽  
...  

Infections caused by ceftolozane/tazobactam and ceftazidime/avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane/tazobactam and ceftazidime/avibactam resistance mechanisms in all MDR/XDR P. aeruginosa isolates recovered during one year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane/tazobactam and ceftazidime/avibactam resistance were evaluated. Clinical conditions, previous positive cultures and β-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. MLSTs and resistance mechanisms were determined using short- and long-read WGS. The impact of PDCs on β-lactam resistance was demonstrated by cloning into an ampC -deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired β-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane/tazobactam or ceftazidime/avibactam. Seven isolates from different STs owed their β-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219 and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13), and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlight that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.


2012 ◽  
Vol 302 (10) ◽  
pp. H2048-H2057 ◽  
Author(s):  
Annie Calvé ◽  
Rami Haddad ◽  
Sarah-Neiel Barama ◽  
Melissa Meilleur ◽  
Igal A. Sebag ◽  
...  

The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca2+-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.


2018 ◽  
Vol 19 (12) ◽  
pp. 3924 ◽  
Author(s):  
Hanley Abramson

The past two decades have seen a revolution in multiple myeloma (MM) therapy with the introduction of several small molecules, mostly orally effective, whose mechanisms are based on proteasome inhibition, histone deacetylase (HDAC) blockade, and immunomodulation. Immunotherapeutic approaches to MM treatment using monoclonal antibodies (mAbs), while long in development, began to reap success with the identification of CD38 and SLAMF7 as suitable targets for development, culminating in the 2015 Food and Drug Administration (FDA) approval of daratumumab and elotuzumab, respectively. This review highlights additional mAbs now in the developmental pipeline. Isatuximab, another anti-CD38 mAb, currently is under study in four phase III trials and may offer certain advantages over daratumumab. Several antibody-drug conjugates (ADCs) in the early stages of development are described, including JNJ-63723283, which has attained FDA breakthrough status for MM. Other mAbs described in this review include denosumab, recently approved for myeloma-associated bone loss, and checkpoint inhibitors, although the future status of the latter combined with immunomodulators has been clouded by unacceptably high death rates that caused the FDA to issue clinical holds on several of these trials. Also highlighted are the therapies based on the B Cell Maturation Antigen (BCMA), another very promising target for anti-myeloma development.


Author(s):  
Leonardo Mancabelli ◽  
Walter Mancino ◽  
Gabriele Andrea Lugli ◽  
Chiara Argentini ◽  
Giulia Longhi ◽  
...  

Amoxicillin-Clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding six months. Moreover, we evaluated AMC sensitivity by Minimal Inhibitory Concentration (MIC) test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains, which exhibit a high level of AMC insensitivity, and which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch-cultures. Importance Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, also affecting the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genome revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in-vitro experiments revealed that one strain, i.e. B. breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


Sign in / Sign up

Export Citation Format

Share Document