scholarly journals Effectiveness of a Controlled 5-FU Delivery Based on FZD10 Antibody-Conjugated Liposomes in Colorectal Cancer In vitro Models

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 650
Author(s):  
Maria Principia Scavo ◽  
Annalisa Cutrignelli ◽  
Nicoletta Depalo ◽  
Elisabetta Fanizza ◽  
Valentino Laquintana ◽  
...  

The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanwen Chen ◽  
Travis B. Lear ◽  
John W. Evankovich ◽  
Mads B. Larsen ◽  
Bo Lin ◽  
...  

AbstractSARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds. We identify homoharringtonine and halofuginone as the most attractive agents, reducing endogenous TMPRSS2 expression at sub-micromolar concentrations. These effects appear to be mediated by a drug-induced alteration in TMPRSS2 protein stability. We further demonstrate that halofuginone modulates TMPRSS2 levels through proteasomal-mediated degradation that involves the E3 ubiquitin ligase component DDB1- and CUL4-associated factor 1 (DCAF1). Finally, cells exposed to homoharringtonine and halofuginone, at concentrations of drug known to be achievable in human plasma, demonstrate marked resistance to SARS-CoV-2 infection in both live and pseudoviral in vitro models. Given the safety and pharmacokinetic data already available for the compounds identified in our screen, these results should help expedite the rational design of human clinical trials designed to combat active COVID-19 infection.


2021 ◽  
Vol 108 (Supplement_1) ◽  
Author(s):  
MI Khot ◽  
M Levenstein ◽  
R Coppo ◽  
J Kondo ◽  
M Inoue ◽  
...  

Abstract Introduction Three-dimensional (3D) cell models have gained reputation as better representations of in vivo cancers as compared to monolayered cultures. Recently, patient tumour tissue-derived organoids have advanced the scope of complex in vitro models, by allowing patient-specific tumour cultures to be generated for developing new medicines and patient-tailored treatments. Integrating 3D cell and organoid culturing into microfluidics, can streamline traditional protocols and allow complex and precise high-throughput experiments to be performed with ease. Method Patient-derived colorectal cancer tissue-originated organoidal spheroids (CTOS) cultures were acquired from Kyoto University, Japan. CTOS were cultured in Matrigel and stem-cell media. CTOS were treated with 5-fluorouracil and cytotoxicity evaluated via fluorescent imaging and ATP assay. CTOS were embedded, sectioned and subjected to H&E staining and immunofluorescence for ABCG2 and Ki67 proteins. HT29 colorectal cancer spheroids were produced on microfluidic devices using cell suspensions and subjected to 5-fluorouracil treatment via fluid flow. Cytotoxicity was evaluated through fluorescent imaging and LDH assay. Result 5-fluorouracil dose-dependent reduction in cell viability was observed in CTOS cultures (p<0.01). Colorectal CTOS cultures retained the histology, tissue architecture and protein expression of the colonic epithelial structure. Uniform 3D HT29 spheroids were generated in the microfluidic devices. 5-fluorouracil treatment of spheroids and cytotoxic analysis was achieved conveniently through fluid flow. Conclusion Patient-derived CTOS are better complex models of in vivo cancers than 3D cell models and can improve the clinical translation of novel treatments. Microfluidics can streamline high-throughput screening and reduce the practical difficulties of conventional organoid and 3D cell culturing. Take-home message Organoids are the most advanced in vitro models of clinical cancers. Microfluidics can streamline and improve traditional laboratory experiments.


2018 ◽  
Vol 19 (10) ◽  
pp. 3089 ◽  
Author(s):  
Marie Hlavničková ◽  
Milan Kuchař ◽  
Radim Osička ◽  
Lucie Vaňková ◽  
Hana Petroková ◽  
...  

Interleukin 17 (IL-17) and its cognate receptor A (IL-17RA) play a crucial role in Th17 cells-mediated pro-inflammatory pathway and pathogenesis of several autoimmune disorders including psoriasis. IL-17 is mainly produced by activated Th-17 helper cells upon stimulation by IL-23 and, via binding to its receptors, mediates IL-17-driven cell signaling in keratinocytes. Hyper-proliferation of keratinocytes belongs to major clinical manifestations in psoriasis. To modulate IL-17-mediated inflammatory cascade, we generated a unique collection of IL-17RA-targeting protein binders that prevent from binding of human IL-17A cytokine to its cell-surface receptor. To this goal, we used a highly complex combinatorial library derived from scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived high-affinity ligands of human IL-17RA, called ARS binders. From 67 analyzed ABD variants, 7 different sequence families were identified. Representatives of these groups competed with human IL-17A for binding to recombinant IL-17RA receptor as well as to IL-17RA-Immunoglobulin G chimera, as tested in enzyme-linked immunosorbent assay (ELISA). Five ARS variants bound to IL-17RA-expressing THP-1 cells and blocked binding of human IL-17 cytokine to the cell surface, as tested by flow cytometry. Three variants exhibited high-affinity binding with a nanomolar Kd value to human keratinocyte HaCaT cells, as measured using Ligand Tracer Green Line. Upon IL-17-stimulated activation, ARS variants inhibited secretion of Gro-α (CXCL1) by normal human skin fibroblasts in vitro. Thus, we identified a novel class of inhibitory ligands that might serve as immunosuppressive IL-17RA-targeted non-IgG protein antagonists.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5637
Author(s):  
Maristella Maggi ◽  
Greta Pessino ◽  
Isabella Guardamagna ◽  
Leonardo Lonati ◽  
Cristina Pulimeno ◽  
...  

E. coli L-asparaginase is an amidohydrolase (EC 3.5.1.1) which has been successfully used for the treatment of Acute Lymphoblastic Leukemia for over 50 years. Despite its efficacy, its side effects, and especially its intrinsic immunogenicity, hamper its usage in a significant subset of cases, thus limiting therapeutic options. Innovative solutions to improve on these drawbacks have been attempted, but none of them have been truly successful so far. In this work, we fully replaced the enzyme scaffold, generating an active, miniaturized form of L-asparaginase by protein engineering of a camel single domain antibody, a class of antibodies known to have a limited immunogenicity in humans. We then targeted it onto tumor cells by an antibody scFv fragment directed onto the CD19 B-cell surface receptor expressed on ALL cells. We named this new type of nanobody-based antibody-drug conjugate “Targeted Catalytic Nanobody” (T-CAN). The new molecule retains the catalytic activity and the binding capability of the original modules and successfully targets CD19 expressing cells in vitro. Thanks to its theoretically reduced immunogenic potential compared to the original molecule, the T-CAN can represent a novel approach to tackle current limitations in L-asparaginase usage.


Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 645-648 ◽  
Author(s):  
JA Edwards ◽  
AL Sullivan ◽  
JE Hoke

Erythroid cell iron and transferrin uptake and release was studied in the anemia of the Belgrade laboratory rat (gene symbol, b), an autosomal recessive trait characterized by hypochromia and hyperferrinemia. When reticulocyte-rich red cells were incubated in vitro with doubly (59Fe, 125I) labeled transferrin, b/b cells demonstrated a significantly higher uptake of transferrin (164% of control at 60 min), and a significantly lower uptake of iron (21% of control at 60 min) than control cells. These findings with b/b cells were simulated by sodium-fluoride-treated control cells, but not by trypsin-treated control cells. When reticulocytes exposed to doubly labeled transferrin were incubated in normal rat plasma, there was a substantial loss of 125I from both the b/b cells (mean 71%) and control cells (mean 49%), but only a loss of 59Fe from the b/b cells (mean 21%). These findings suggest a defect in the delivery of iron to the b/b reticulocyte, which is distal to the binding of transferrin to its cell surface receptor.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009153
Author(s):  
Bindu S. Mayi ◽  
Jillian A. Leibowitz ◽  
Arden T. Woods ◽  
Katherine A. Ammon ◽  
Alphonse E. Liu ◽  
...  

Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1456 ◽  
Author(s):  
Donatella Fiore ◽  
Chiara Piscopo ◽  
Maria Proto ◽  
Michele Vasaturo ◽  
Fabrizio Dal Piaz ◽  
...  

N6-isopentenyladenosine has been shown to exert potent in vitro antitumor activity on different human cancers, including colorectal cancer. Although some potential biochemical targets have been identified, its precise mechanism of action remains unclear. We found that N6-isopentenyladenosine affects colorectal cancer proliferation in in vitro models carrying different mutational status of FBXW7 and TP53 genes, and in HCT116 xenografts in SCID mice, by increasing the expression of the well-established tumor suppressor FBXW7, a component of the SCF-E3 ubiquitin ligase complex that promotes degradation of various oncoproteins and transcription factors, such as c-Myc, SREBP and Mcl1. Corroborating our previous studies, we identified for the first time the FBXW7/SREBP/FDPS axis as a target of the compound. Pull down of ubiquitinated proteins, immunoprecipitation and luciferase assays, reveal that through the increase of FBXW7/c-Myc binding, N6-isopentenyladenosine induces the ubiquitination of c-Myc, inhibiting its transcriptional activity. Moreover, in FBXW7- and TP53-wild type cells, N6-isopentenyladenosine strongly synergizes with 5-Fluorouracil to inhibit colon cancer growth in vitro. Our results provide novel insights into the molecular mechanism of N6-isopentenyladenosine, revealing its multi-targeting antitumor action, in vitro and in vivo. Restoring of FBXW7 tumor-suppressor represents a valid therapeutic tool, enabling N6-isopentenyladenosine as optimizable compound for patient-personalized therapies in colorectal cancer.


2020 ◽  
Vol 21 (13) ◽  
pp. 4633 ◽  
Author(s):  
Paulína Pidíkova ◽  
Richard Reis ◽  
Iveta Herichova

Regulation of microRNA (miRNA) expression has been extensively studied with respect to colorectal cancer (CRC), since CRC is one of the leading causes of cancer mortality worldwide. Transcriptional control of miRNAs creating clusters can be, to some extent, estimated from cluster position on a chromosome. Levels of miRNAs are also controlled by miRNAs “sponging” by long non-coding RNAs (ncRNAs). Both types of miRNA regulation strongly influence their function. We focused on clusters of miRNAs found to be down-regulated in CRC, containing miR-1, let-7, miR-15, miR-16, miR-99, miR-100, miR-125, miR-133, miR-143, miR-145, miR-192, miR-194, miR-195, miR-206, miR-215, miR-302, miR-367 and miR-497 and analysed their genome position, regulation and functions. Only evidence provided with the use of CRC in vivo and/or in vitro models was taken into consideration. Comprehensive research revealed that down-regulated miRNA clusters in CRC are mostly located in a gene intron and, in a majority of cases, miRNA clusters possess cluster-specific transcriptional regulation. For all selected clusters, regulation mediated by long ncRNA was experimentally demonstrated in CRC, at least in one cluster member. Oncostatic functions were predominantly linked with the reviewed miRNAs, and their high expression was usually associated with better survival. These findings implicate the potential of down-regulated clusters in CRC to become promising multi-targets for therapeutic manipulation.


2008 ◽  
Vol 76 (7) ◽  
pp. 2862-2871 ◽  
Author(s):  
Xi Na ◽  
Ho Kim ◽  
Mary P. Moyer ◽  
Charalabos Pothoulakis ◽  
J. Thomas LaMont

ABSTRACT Clostridium difficile toxin A (TxA), a key mediator of antibiotic-associated colitis, requires binding to a cell surface receptor prior to internalization. Our aim was to identify novel plasma membrane TxA binding proteins on human colonocytes. TxA was coupled with biotin and cross-linked to the surface of HT29 human colonic epithelial cells. The main colonocyte binding protein for TxA was identified as glycoprotein 96 (gp96) by coimmunoprecipitation and mass spectrum analysis. gp96 is a member of the heat shock protein family, which is expressed on human colonocyte apical membranes as well as in the cytoplasm. TxA binding to gp96 was confirmed by fluorescence immunostaining and in vitro coimmunoprecipitation. Following TxA binding, the TxA-gp96 complex was translocated from the cell membrane to the cytoplasm. Pretreatment with gp96 antibody decreased TxA binding to colonocytes and inhibited TxA-induced cell rounding. Small interfering RNA directed against gp96 reduced gp96 expression and cytotoxicity in colonocytes. TxA-induced inflammatory signaling via p38 and apoptosis as measured by activation of BAK (Bcl-2 homologous antagonist/killer) and DNA fragmentation were decreased in gp96-deficient B cells. We conclude that human colonocyte gp96 serves as a plasma membrane binding protein that enhances cellular entry of TxA, participates in cellular signaling events in the inflammatory cascade, and facilitates cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document