scholarly journals Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Dan-Yang Liu ◽  
Jia-Chen Liu ◽  
Shuang Liang ◽  
Xiang-He Meng ◽  
Jonathan Greenbaum ◽  
...  

Since coronavirus disease 2019 (COVID-19) is a serious new worldwide public health crisis with significant morbidity and mortality, effective therapeutic treatments are urgently needed. Drug repurposing is an efficient and cost-effective strategy with minimum risk for identifying novel potential treatment options by repositioning therapies that were previously approved for other clinical outcomes. Here, we used an integrated network-based pharmacologic and transcriptomic approach to screen drug candidates novel for COVID-19 treatment. Network-based proximity scores were calculated to identify the drug–disease pharmacological effect between drug–target relationship modules and COVID-19 related genes. Gene set enrichment analysis (GSEA) was then performed to determine whether drug candidates influence the expression of COVID-19 related genes and examine the sensitivity of the repurposing drug treatment to peripheral immune cell types. Moreover, we used the complementary exposure model to recommend potential synergistic drug combinations. We identified 18 individual drug candidates including nicardipine, orantinib, tipifarnib and promethazine which have not previously been proposed as possible treatments for COVID-19. Additionally, 30 synergistic drug pairs were ultimately recommended including fostamatinib plus tretinoin and orantinib plus valproic acid. Differential expression genes of most repurposing drugs were enriched significantly in B cells. The findings may potentially accelerate the discovery and establishment of an effective therapeutic treatment plan for COVID-19 patients.

Author(s):  
Mohamed E. M. Saeed ◽  
Onat Kadioglu ◽  
Henry Johannes Greten ◽  
Adem Yildirim ◽  
Katharina Mayr ◽  
...  

SummaryBackground Precision medicine and drug repurposing are attractive strategies, especially for tumors with worse prognosis. Glioblastoma is a highly malignant brain tumor with limited treatment options and short survival times. We identified novel BRAF (47-438del) and PIK3R1 (G376R) mutations in a glioblastoma patient by RNA-sequencing. Methods The protein expression of BRAF and PIK3R1 as well as the lack of EGFR expression as analyzed by immunohistochemistry corroborated RNA-sequencing data. The expression of additional markers (AKT, SRC, mTOR, NF-κB, Ki-67) emphasized the aggressiveness of the tumor. Then, we screened a chemical library of > 1500 FDA-approved drugs and > 25,000 novel compounds in the ZINC database to find established drugs targeting BRAF47-438del and PIK3R1-G376R mutated proteins. Results Several compounds (including anthracyclines) bound with higher affinities than the control drugs (sorafenib and vemurafenib for BRAF and PI-103 and LY-294,002 for PIK3R1). Subsequent cytotoxicity analyses showed that anthracyclines might be suitable drug candidates. Aclarubicin revealed higher cytotoxicity than both sorafenib and vemurafenib, whereas idarubicin and daunorubicin revealed higher cytotoxicity than LY-294,002. Liposomal formulations of anthracyclines may be suitable to cross the blood brain barrier. Conclusions In conclusion, we identified novel small molecules via a drug repurposing approach that could be effectively used for personalized glioblastoma therapy especially for patients carrying BRAF47-438del and PIK3R1-G376R mutations.


2020 ◽  
Vol 13 (12) ◽  
pp. 431
Author(s):  
Beatriz Suay-Garcia ◽  
Antonio Falcó ◽  
J. Ignacio Bueso-Bordils ◽  
Gerardo M. Anton-Fos ◽  
M. Teresa Pérez-Gracia ◽  
...  

Drug repurposing appears as an increasing popular tool in the search of new treatment options against bacteria. In this paper, a tree-based classification method using Linear Discriminant Analysis (LDA) and discrete indexes was used to create a QSAR (Quantitative Structure-Activity Relationship) model to predict antibacterial activity against Escherichia coli. The model consists on a hierarchical decision tree in which a discrete index is used to divide compounds into groups according to their values for said index in order to construct probability spaces. The second step consists in the calculation of a discriminant function which determines the prediction of the model. The model was used to screen the DrugBank database, identifying 134 drugs as possible antibacterial candidates. Out of these 134 drugs, 8 were antibacterial drugs, 67 were drugs approved for different pathologies and 55 were drugs in experimental stages. This methodology has proven to be a viable alternative to the traditional methods used to obtain prediction models based on LDA and its application provides interesting new drug candidates to be studied as repurposed antibacterial treatments. Furthermore, the topological indexes Nclass and Numhba have proven to have the ability to group active compounds effectively, which suggests a close relationship between them and the antibacterial activity of compounds against E. coli.


2020 ◽  
Vol 36 (17) ◽  
pp. 4626-4632
Author(s):  
Yonglin Peng ◽  
Meng Yuan ◽  
Juncai Xin ◽  
Xinhua Liu ◽  
Ju Wang

Abstract Motivation Alzheimer’s disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD. Results In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation datasets from the Library of Integrated Network-Based Cellular Signatures to introduce a systematic computational process to discover new drugs implicated in AD. First, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases. Availability and implementation The source code is available at https://github.com/zer0o0/drug-repo.git. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Mateus S.M. Serafim ◽  
Jadson C. Gertrudes ◽  
Débora M. A. Costa ◽  
Patricia R. Oliveira ◽  
Vinicius G. Maltarollo ◽  
...  

Since the emergence of the new severe acute respiratory syndrome-related coronaviruses 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been a huge effort of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.


2021 ◽  
Vol 14 (2) ◽  
pp. 87
Author(s):  
Andrea Gelemanović ◽  
Tinka Vidović ◽  
Višnja Stepanić ◽  
Katarina Trajković

A year after the initial outbreak, the COVID-19 pandemic caused by SARS-CoV-2 virus remains a serious threat to global health, while current treatment options are insufficient to bring major improvements. The aim of this study is to identify repurposable drug candidates with a potential to reverse transcriptomic alterations in the host cells infected by SARS-CoV-2. We have developed a rational computational pipeline to filter publicly available transcriptomic datasets of SARS-CoV-2-infected biosamples based on their responsiveness to the virus, to generate a list of relevant differentially expressed genes, and to identify drug candidates for repurposing using LINCS connectivity map. Pathway enrichment analysis was performed to place the results into biological context. We identified 37 structurally heterogeneous drug candidates and revealed several biological processes as druggable pathways. These pathways include metabolic and biosynthetic processes, cellular developmental processes, immune response and signaling pathways, with steroid metabolic process being targeted by half of the drug candidates. The pipeline developed in this study integrates biological knowledge with rational study design and can be adapted for future more comprehensive studies. Our findings support further investigations of some drugs currently in clinical trials, such as itraconazole and imatinib, and suggest 31 previously unexplored drugs as treatment options for COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Chen ◽  
Qiaodan Zhou ◽  
Junjie Liu ◽  
Wei Zhang

BackgroundThe emergence of immune checkpoint inhibitors (ICIs) marks the beginning of a new era of immunotherapy for hepatocellular carcinoma (HCC), however, not all patients respond successfully to this treatment. A major challenge for HCC immunotherapy is the development of ways to screen for those patients that would benefit from this type of treatment and determine the optimal treatment plan for individual patients. Therefore, it is important to find a biomarker which allows for the stratification of HCC patients, which distinguishes responders from non-responders, thereby further improving the clinical benefits for those undergoing immunotherapy.MethodsWe used univariate and multivariate Cox risk proportional regression models to evaluate the relationship between non-synonymous mutations with a mutation frequency greater than 10%. We made a prognosis of an immunotherapy HCC cohort using mutation and prognosis data. An additional three HCC queues from the cbioportal webtool were used for further verification. The CIBERSORT, IPS, quanTIseq, and MCPcounter algorithms were used to evaluate the immune cells. PCA and z-score algorithm were used to calculate immune-related signature with published gene sets. Gene set enrichment analysis (GSEA) was used to compare the differences in the pathway-based enrichment scores of candidate genes between mutant and wild types.ResultsUnivariate and multivariate Cox results showed that only CTNNB1-Mutant(CTNNB1-MUT) was associated with progression-free survival (PFS) of HCC patients in the immunotherapy cohort. After excluding the potential bias introduced by other clinical features, it was found that CTNNB1-MUT served as an independent predictor of the prognosis of HCC patients after immunotherapy (P < 0.05; HR > 1). The results of the tumor immune microenvironment (TIME) analysis showed that patients with CTNNB1-MUT had significantly reduced activated immune cells [such as T cells, B cells, M1-type macrophages, and dendritic cells (DCs)], significantly increased M2-type macrophages, a significantly decreased expression of immunostimulating molecules, low activity of the immune activation pathways (cytokine pathway, immune cell activation and recruitment) and highly active immune depletion pathways (fatty acid metabolism, cholesterol metabolism, and Wnt pathway).ConclusionsIn this study, we found CTNNB1-MUT to be a potential biomarker for HCC immunotherapy patients, because it identified those patients are less likely to benefit from ICIs.


Author(s):  
Minjee Kim ◽  
Young Bong Kim

Abstract As the number of novel coronavirus (COVID-19) cases continues to rise, there is a global need for rapid drug development. In this study, we propose a systems pharmacology approach to reposition FDA-approved drug candidates for coronavirus, identify targets and suggest a synergistic drug combination using network pharmacology. We collected 67 genes associated with coronavirus, performed an enrichment analysis to obtain coronavirus-associated disease- pathway and constructed protein-protein interaction (PPI) network based on 67 genes. Total 37 significant disease-pathways were retrieved, and associated FDA-approved drugs were listed for drug repurposing candidates. Our PPI network showed 51 targets from 67 genes and identified IL6 and TNF as potential targets for coronavirus. From the FDA drug list, we selected four drugs that are experimentally used or studied for coronavirus to construct two- drug combinations. From six drug-drug networks, we identified hydroxychloroquine + ribavirin combination had the highest number of overlapping targets (IL6, IL2, IL10, CASP3, IFNA1) from PPI network target list, suggesting a potent synergistic drug combination for coronavirus. With the aim to support the rapid drug development, we suggest a new approach using systems-level drug repurposing for COVID-19 treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Annie Wai Yeeng Chai ◽  
Aik Choon Tan ◽  
Sok Ching Cheong

AbstractEffective treatment options for head and neck squamous cell carcinoma (HNSCC) are currently lacking. We exploited the drug response and genomic data of the 28 HNSCC cell lines, screened with 4,518 compounds, from the PRISM repurposing dataset to uncover repurposing drug candidates for HNSCC. A total of 886 active compounds, comprising of 418 targeted cancer, 404 non-oncology, and 64 chemotherapy compounds were identified for HNSCC. Top classes of mechanism of action amongst targeted cancer compounds included PI3K/AKT/MTOR, EGFR, and HDAC inhibitors. We have shortlisted 36 compounds with enriched killing activities for repurposing in HNSCC. The integrative analysis confirmed that the average expression of EGFR ligands (AREG, EREG, HBEGF, TGFA, and EPGN) is associated with osimertinib sensitivity. Novel putative biomarkers of response including those involved in immune signalling and cell cycle were found to be associated with sensitivity and resistance to MEK inhibitors respectively. We have also developed an RShiny webpage facilitating interactive visualization to fuel further hypothesis generation for drug repurposing in HNSCC. Our study provides a rich reference database of HNSCC drug sensitivity profiles, affording an opportunity to explore potential biomarkers of response in prioritized drug candidates. Our approach could also reveal insights for drug repurposing in other cancers.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2632
Author(s):  
Aparajita Budithi ◽  
Sumeyye Su ◽  
Arkadz Kirshtein ◽  
Leili Shahriyari

Many colon cancer patients show resistance to their treatments. Therefore, it is important to consider unique characteristic of each tumor to find the best treatment options for each patient. In this study, we develop a data driven mathematical model for interaction between the tumor microenvironment and FOLFIRI drug agents in colon cancer. Patients are divided into five distinct clusters based on their estimated immune cell fractions obtained from their primary tumors’ gene expression data. We then analyze the effects of drugs on cancer cells and immune cells in each group, and we observe different responses to the FOLFIRI drugs between patients in different immune groups. For instance, patients in cluster 3 with the highest T-reg/T-helper ratio respond better to the FOLFIRI treatment, while patients in cluster 2 with the lowest T-reg/T-helper ratio resist the treatment. Moreover, we use ROC curve to validate the model using the tumor status of the patients at their follow up, and the model predicts well for the earlier follow up days.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangming Hou ◽  
Yingjuan Xu ◽  
Dequan Wu

AbstractThe infiltration degree of immune and stromal cells has been shown clinically significant in tumor microenvironment (TME). However, the utility of stromal and immune components in Gastric cancer (GC) has not been investigated in detail. In the present study, ESTIMATE and CIBERSORT algorithms were applied to calculate the immune/stromal scores and the proportion of tumor-infiltrating immune cell (TIC) in GC cohort, including 415 cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were screened by Cox proportional hazard regression analysis and protein–protein interaction (PPI) network construction. Then ADAMTS12 was regarded as one of the most predictive factors. Further analysis showed that ADAMTS12 expression was significantly higher in tumor samples and correlated with poor prognosis. Gene Set Enrichment Analysis (GSEA) indicated that in high ADAMTS12 expression group gene sets were mainly enriched in cancer and immune-related activities. In the low ADAMTS12 expression group, the genes were enriched in the oxidative phosphorylation pathway. CIBERSORT analysis for the proportion of TICs revealed that ADAMTS12 expression was positively correlated with Macrophages M0/M1/M2 and negatively correlated with T cells follicular helper. Therefore, ADAMTS12 might be a tumor promoter and responsible for TME status and tumor energy metabolic conversion.


Sign in / Sign up

Export Citation Format

Share Document