scholarly journals Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1167
Author(s):  
Giovanna C. N. B. Lôbo ◽  
Karen L. R. Paiva ◽  
Ana Luísa G. Silva ◽  
Marina M. Simões ◽  
Marina A. Radicchi ◽  
...  

Cancer, a group of diseases responsible for the second largest cause of global death, is considered one of the main public health problems today. Despite the advances, there are still difficulties in the development of more efficient cancer therapies and fewer adverse effects for the patients. In this context, nanobiotechnology, a materials science on a nanometric scale specified for biology, has been developing and acquiring prominence for the synthesis of nanocarriers that provide a wide surface area in relation to volume, better drug delivery, and a maximization of therapeutic efficiency. Among these carriers, the ones that stand out are those focused on the activation of the immune system. The literature demonstrates the importance of this system for anticancer therapy, given that the best treatment for this disease also activates the immune system to recognize, track, and destroy all remaining tumor cells.

2020 ◽  
Vol 20 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Kuldeep Rajpoot

Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 940 ◽  
Author(s):  
So Yun Lee ◽  
Moon Sung Kang ◽  
Woo Yeup Jeong ◽  
Dong-Wook Han ◽  
Ki Su Kim

Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.


2017 ◽  
Vol 23 (3) ◽  
pp. 454-466 ◽  
Author(s):  
Daniele R. Nogueira-Librelotto ◽  
Cristiane F. Codevilla ◽  
Ammad Farooqi ◽  
Clarice M. B. Rolim

A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2019 ◽  
Vol 70 (3) ◽  
pp. 160-172
Author(s):  
Bensu Karahalil ◽  
Sevgi Yardım-Akaydin ◽  
Sultan Nacak Baytas

AbstractThe entire world is looking for effective cancer therapies whose benefits would outweigh their toxicity. One way to reduce resistance to chemotherapy and its adverse effects is the so called targeted therapy, which targets specific molecules (“molecular targets”) that play a critical role in cancer growth, progression, and metastasis. One such specific target are microtubules. In this review we address the current knowledge about microtubule-targeting agents or drugs (MTAs/MTDs) used in cancer therapy from their synthesis to toxicities. Synthetic and natural MTAs exhibit antitumor activity, and preclinical and clinical studies have shown that their anticancer effectiveness is higher than that of traditional drug therapies. Furthermore, MTAs involve a lower risk of adverse effects such as neurotoxicity and haemotoxicity. Several new generation MTAs are currently being evaluated for clinical use. This review brings updated information on the benefits of MTAs, therapeutic approaches, advantages, and challenges in their research.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 563 ◽  
Author(s):  
Elisa Bergaggio ◽  
Roberto Piva

Isocitrate dehydrogenases (IDHs) are enzymes that catalyze the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (αKG) and CO2. The discovery of IDH1 and IDH2 mutations in several malignancies has brought to the approval of drugs targeting IDH1/2 mutants in cancers. Here, we summarized findings addressing the impact of IDH mutants in rare pathologies and focused on the relevance of non-mutated IDH enzymes in tumors. Several pieces of evidence suggest that the enzymatic inhibition of IDHs may have therapeutic potentials also in wild-type IDH cancers. Moreover, IDHs inhibition could enhance the efficacy of canonical cancer therapies, such as chemotherapy, target therapy, and radiotherapy. However, further studies are required to elucidate whether IDH proteins are diagnostic/prognostic markers, instrumental for tumor initiation and maintenance, and could be exploited as targets for anticancer therapy. The development of wild-type IDH inhibitors is expected to improve our understanding of a potential non-oncogenic addition to IDH1/2 activities and to fully address their applicability in combination with other therapies.


Nanoscale ◽  
2015 ◽  
Vol 7 (34) ◽  
pp. 14191-14216 ◽  
Author(s):  
Seonmi Baek ◽  
Rajendra K. Singh ◽  
Dipesh Khanal ◽  
Kapil D. Patel ◽  
Eun-Jung Lee ◽  
...  

Effectiveness of the delivery of anticancer drugs and the efficacy of cancer therapy can be enhanced using smart multifunctional mesoporous nanoparticles.


2019 ◽  
Vol 20 (2) ◽  
pp. 341 ◽  
Author(s):  
Dik-Lung Ma ◽  
Chun Wu ◽  
Sha-Sha Cheng ◽  
Fu-Wa Lee ◽  
Quan-Bin Han ◽  
...  

Platinum-based drugs have revolutionized cancer care, but are unfortunately associated with various adverse effects. Meanwhile, natural product scaffolds exhibit multifarious bioactivities and serve as an attractive resource for cancer therapy development. Thus, the conjugation of natural product scaffolds to metal complexes becomes an attractive strategy to reduce the severe side effects arising from the use of metal bearing drugs. This review aims to highlight the recent examples of natural product-conjugated metal complexes as cancer therapies with enhanced selectivity and efficacy. We discuss the mechanisms and features of different conjugate complexes and present an outlook and perspective for the future of this field.


2016 ◽  
Vol 14 (2) ◽  
pp. 294-299
Author(s):  
Rafael Aliosha Kaliks

ABSTRACT Recent advances in the understanding of tumor driver mutations, signaling pathways that lead to tumor progression, and the better understanding of the interaction between tumor cells and the immune system are revolutionizing cancer treatment. The pace at which new treatments are approved and the prices at which they are set have made it even more difficult to offer these treatments in countries like Brazil. In this review we present for the non-oncologist these new treatments and compare their availability in Brazilian public health system and private health system with that of developed countries.


Nano LIFE ◽  
2017 ◽  
Vol 07 (03n04) ◽  
pp. 1750008
Author(s):  
Wenhan Liu ◽  
Zejun Wang ◽  
Yao Luo ◽  
Nan Chen

Despite the clinical advances in oncology, cancer is still the major cause of death worldwide. Recent research demonstrates that the immune system plays a critical role in preventing tumor occurrence and development. The focus on cancer treatment has been shifted from directly targeting the tumor cells to motivating the immune system to achieve this goal. However, the activity of immune system is often suppressed in cancer patients. To boost the anti-tumor immunity against cancers, various nanocomposites have been developed to enhance the efficacy of immunostimulatory agents. Here, we review current advances in nanomaterial-mediated immunotherapy for the treatment of cancer, with an emphasis on applications of nanocomposites as immunoadjuvants in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document