scholarly journals Carotenoids from Persimmon (Diospyros kaki Thunb.) Byproducts Exert Photoprotective, Antioxidative and Microbial Anti-Adhesive Effects on HaCaT

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1898
Author(s):  
Sara Gea-Botella ◽  
Bryan Moreno-Chamba ◽  
Laura de la Casa ◽  
Julio Salazar-Bermeo ◽  
Nuria Martí ◽  
...  

Persimmon (Diospyros kaki Thunb.) fruits are a remarkable source of carotenoids, which have shown protective effects against UV radiation in bacteria, fungi, algae, and plants. The aim of this study was to analyze the photoprotection provided by an acetone extract, rich in carotenoids and obtained from byproducts derived from the persimmon juice industry, against UV-induced cell death in the keratinocyte HaCaT cell line. For this purpose, the cytotoxicity and phototoxicity of carotenoid extract, as well as its intracellular reactive oxygen species (ROS) scavenging and anti-adhesive activities towards HaCaT cells, were evaluated. The in vitro permeation test provided information about the permeability of the carotenoid extract. Persimmon extracts, rich in carotenoids (PEC), were absorbed by HaCaT keratinocyte cells, which reduced the UV-induced intracellular ROS production in treated cells. Thus, PEC exerted a photoprotective and regenerative effect on UV-irradiated HaCaT cells, and this protection was UV dose-dependent. No cytotoxic effect was observed in HaCaT cultures at the concentration tested. PEC treatment also stimulated the adhesion capacity of skin microbiome to HaCaT cells, while exhibiting a significant anti-adhesive activity against all tested pathogens. In conclusion, PEC showed potential for use as a functional ingredient in skin-care products.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urszula K. Komarnicka ◽  
Barbara Pucelik ◽  
Daria Wojtala ◽  
Monika K. Lesiów ◽  
Grażyna Stochel ◽  
...  

Abstract[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.


2011 ◽  
Vol 26 (S2) ◽  
pp. 908-908
Author(s):  
H.R. Sadeghnia ◽  
S.H. Mousavi ◽  
Z. Tayarani-Najaran ◽  
M. Asghari

The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders.Nigella sativa L. and its active component, thymoquinone (TQ) have been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h and then subjected to SGD for 6 or 18 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2’,7’-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (p < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (p < 0.001). N. sativa (250 μg/ml, p < 0.01) and TQ (2.34, 4.68, 9.37 μM, p < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Wattanased Jarisarapurin ◽  
Wariya Sanrattana ◽  
Linda Chularojmontri ◽  
Khwandow Kunchana ◽  
Suvara K. Wattanapitayakul

It has been proven that high consumption of fruit and vegetable lowers the risks of cardiovascular and other oxidative stress-related diseases. Here we evaluated the effects of a tropical fruit, unripeCarica papaya(UCP), on endothelial protection against oxidative damage induced by H2O2. The antioxidant properties of UCP were investigated using the assays of FRAP and ORAC and specific ROS scavenging activities (H2O2,O2•-, OH•, HOCl). Cytoprotective property was tested in human endothelial cell line EA.hy926 with respect to cell survival, intracellular ROS levels, antioxidant enzyme activities (CAT, SOD, GPX), survival/stress signaling (AKT, JNK, p38), and nuclear signaling (Nrf2, NF-kB). UCP processed high antioxidant activity and scavenging activity against H2O2> OH•>O2•-> HOCl, respectively. UCP improved cell survival in the milieu of ROS reduction. While SOD was increased by UCP, CAT activity was enhanced when cells were challenged with H2O2. UCP had no impact on H2O2-activated AKT, JNK, and p38 signaling but significantly decreased nuclear NF-κB levels. The overactivation of Nrf2 in response to oxidative stress was constrained by UCP. In conclusion, UCP protected endothelial cells against oxidative damage through intracellular ROS reduction, enhanced CAT activity, suppression of NF-kB, and prohibition of Nrf2 dysregulation. Thus, UCP might be a candidate for development of nutraceuticals against CVD and oxidative-related diseases and conditions.


2017 ◽  
Vol 41 (2) ◽  
pp. 742-754 ◽  
Author(s):  
Chun-tao Yang ◽  
Fu-hui Meng ◽  
Li Chen ◽  
Xiang Li ◽  
Lai-Jian Cen ◽  
...  

Background/Aim: Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC’s dermal protection in human HaCaT keratinocytes. Methods: The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. Results: We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. Conclusion: The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future.


Dermatology ◽  
2019 ◽  
Vol 236 (2) ◽  
pp. 160-169
Author(s):  
Liya Song ◽  
Qian Wang ◽  
Yumei Zheng ◽  
Laiji Ma ◽  
Yuanyuan Chen ◽  
...  

Background: Atopic dermatitis (AD) is a chronic, recurrent skin condition with recently increased incidence in younger children. AD development has been correlated with the skin microbiome, and Staphylococcus aureus enrichment causes significant increases in skin lesions. Objective: Our objectives were to compare the microbial diversity of the cheek skin of children with or without AD aged 0–1 years in China, and to determine whether 4 types of skin-isolated bacteria could inhibit S. aureus in vitro. Methods: The skin microbial samples of cheek skin of children were sequenced by 16S rRNA V1-V2 region. Four skin isolated bacterial fermentation supernatants were tested for effects on S. aureus growth, membrane formation, and induction of cytokine secretion from HaCaT cells. Results: Bacterial diversity decreased significantly in skin with severe AD compared to healthy skin (p < 0.01). Seven phyla had content >1%, 4 of which differed in AD (p < 0.05). 38 genera had content >1%, 15 differed (p < 0.05). Differences in 8 species were observed (p < 0.05). In vitro antibacterial and cellular experiments showed that S. aureus growth, biofilm formation, and induction of interleukin (IL)-1α and IL-6 secretion from HaCaT cells were significantly inhibited by Klebsiella oxytoca, Kocuria rhizophila, and Staphylococcus epidermidis culture supernatants (p < 0.05). Conclusion: Skin microbiome changes in children varied with age and with AD. There were complex interactions between skin isolated bacteria and S. aureus which could inhibit S. aureus growth and biofilm formation in vitro, suggesting that these microorganisms could be used in AD treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Huang ◽  
Nicole Cash ◽  
Li Wen ◽  
Peter Szatmary ◽  
Rajarshi Mukherjee ◽  
...  

Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP usingin vitroandin vivoapproaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisationper se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease.


2016 ◽  
Vol 71 (7-8) ◽  
pp. 191-199 ◽  
Author(s):  
María Porres-Martínez ◽  
Elena González-Burgos ◽  
M. Emilia Carretero ◽  
M. Pilar Gómez-Serranillos

Abstract Oxidative stress is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Natural products are considered as therapeutically useful antioxidant agents against reactive oxygen species (ROS). We have evaluated the antioxidant and protective potential of the monoterpenes 1,8-cineole and α-pinene against H2O2-induced oxidative stress in PC12 (rat pheochromocytoma) cells. Pretreatment with these monoterpenes was found to attenuate the loss of cell viability and the changes in cell morphology. Moreover, they inhibited the intracellular ROS production and markedly enhanced the expression of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and heme-oxygenase 1 (HO-1). In addition, they were able to decrease apoptosis as is evident from reduced capase-3 activity. The mechanisms of their antioxidant action appear to involve ROS scavenging and induction of the nuclear Nrf2 factor. This study demonstrates the potential beneficial therapeutic effect of these common monoterpenes on the oxidant/antioxidant balance in diseases of the nervous system.


2020 ◽  
Vol 76 (2) ◽  
pp. 317-327
Author(s):  
Yan Nie ◽  
Xun Xu ◽  
Weiwei Wang ◽  
Nan Ma ◽  
Andreas Lendlein

BACKGROUND: Keratinocytes are exposed to a thermal gradient throughout epidermal layers in human skin depending on environmental temperatures. OBJECTIVE: Here, the effect of cyclic temperature changes (ΔT) on HaCaT cell behaviors was explored. METHODS: HaCaT cells were cultured at constant temperature (37 °C or 25 °C) or under ΔT conditions. The morphology, mechanics, cell cycle progression, proliferation, and lipid synthesis of HaCaT cells were determined. RESULTS: ΔT conditions led to the inhomogeneous arrangement of the cytoskeleton in HaCaT cells, which resulted in enlarged size, rounder shape, and increased stiffness. Accumulation in the G2/M phase in the cell cycle, a decreased proliferation rate, and a delayed lipogenesis were detected in HaCaT cells cultured under ΔT conditions. CONCLUSIONS: ΔT conditions resulted in the re-arrangement of the cytoskeleton in HaCaT cells, which showed similarity to the temperature-induced disassemble and re-assemble of cytoskeletons in keratinocyte in vivo. The altered cytoskeleton arrangement resulted in the cell enlargement and stiffening, which reflected the changes in cellular functions. The application of oscillatory temperature in the in vitro culture of keratinocytes provides a way to gain more insights into the role of skin in response to environmental stimuli and maintaining its homeostasis in vivo.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
T Ratanavalachai ◽  
S Thitiorul ◽  
A Itharat ◽  
N Runraksa ◽  
S Ruangnoo

Sign in / Sign up

Export Citation Format

Share Document