scholarly journals Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine

Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Urška Jančič ◽  
Selestina Gorgieva

Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.

2020 ◽  
Vol 27 (34) ◽  
pp. 5790-5828 ◽  
Author(s):  
Ze Wang ◽  
Chunyang He ◽  
Jing-Shan Shi

Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.


2017 ◽  
Vol 17 (19) ◽  
pp. 2129-2142 ◽  
Author(s):  
Renata Płocinska ◽  
Malgorzata Korycka-Machala ◽  
Przemyslaw Plocinski ◽  
Jaroslaw Dziadek

Background: Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. Factors: Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. Discussion and Conclusion: This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors – the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and elongation of the DNA during the replication process. They are pivotal processes required for successful multiplication of the bacterial cells and hence they are extensively investigated for the development of antituberculosis drugs. Finally, we summarize the most potent inhibitors of DNA synthesis and provide an up to date report on their status in the clinical trials.


2020 ◽  
Vol 20 (14) ◽  
pp. 1264-1273 ◽  
Author(s):  
Bruno Casciaro ◽  
Floriana Cappiello ◽  
Walter Verrusio ◽  
Mauro Cacciafesta ◽  
Maria Luisa Mangoni

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.


2019 ◽  
Vol 10 ◽  
Author(s):  
Livia Gargiullo ◽  
Federica Del Chierico ◽  
Patrizia D’Argenio ◽  
Lorenza Putignani

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 691
Author(s):  
Milana Bergamino Sirvén ◽  
Sonia Pernas ◽  
Maggie C. U. Cheang

The rapidly evolving landscape of immuno-oncology (IO) is redefining the treatment of a number of cancer types. IO treatments are becoming increasingly complex, with different types of drugs emerging beyond checkpoint inhibitors. However, many of the new drugs either do not progress from phase I-II clinical trials or even fail in late-phase trials. We have identified at least five areas in the development of promising IO treatments that should be redefined for more efficient designs and accelerated approvals. Here we review those critical aspects of IO drug development that could be optimized for more successful outcome rates in all cancer types. It is important to focus our efforts on the mechanisms of action, types of response and adverse events of these novel agents. The use of appropriate clinical trial designs with robust biomarkers of response and surrogate endpoints will undoubtedly facilitate the development and subsequent approval of these drugs. Further research is also needed to establish biomarker-driven strategies to select which patients may benefit from immunotherapy and identify potential mechanisms of resistance.


2020 ◽  
Vol 24 (5) ◽  
pp. 57-60
Author(s):  
B. S. Elger ◽  
F. Mirzayev ◽  
S. Afandiyev ◽  
E. Gurbanova

SETTING: Prisons are known to have extremely high tuberculosis (TB) and multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB prevalence and poor treatment outcomes.OBJECTIVE: To examine the screening and M/XDR-TB treatment with new TB drugs in prisons from the perspective of international ethical and legal requirements.DESIGN: WHO recommendations on TB screening in prisons and M/XDR-TB treatment as well as the international human rights law on prisoners were analysed.RESULTS: Prisoners have a human right to access at least the same level of TB care as in their communities. Screening for TB in prisons, which may run contrary to a given individual's choice to be tested, may be justified by the positive obligation to prevent other prisoners from contracting a possibly deadly disease. Introduction of new TB drugs in prisons is necessary, ethically sound and should start in parallel with introduction in a civilian sector in strict compliance with the WHO recommendations.CONCLUSION: Access to screening for TB, as well as effective treatment according to WHO recommendations, must be ensured by countries on the basis of international human rights conventions.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Maria R. Pozo ◽  
Gantt W. Meredith ◽  
Emilia Entcheva

The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing—HDAC inhibitors (HDACi)—targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.


Author(s):  
Zofia Nuc ◽  
◽  
Aldona Dobrzycka-Krahel

Chitin is a naturally occurring polymer. Together with its derivatives such as chitosan, it has a wide spectrum of application possibilities, and many properties not yet exploited. Chitosan possesses many features desirable in an ideal antimicrobial polymer. It shows activity against multidrug-resistant bacterial and fungal strains that pose a challenge to modern medicine. Chitosan also shows activity against certain viruses, such as SARS-CoV-2. It might be used as a drug or a vaccine delivery system, is biodegradable, bioavailable and considered safe for medical use. It is important to continue exploring the potential of chitosan, as well as to investigate its sources. Indeed, many sources of this polymer are still not or have been poorly described. In this paper, we compile the current state of knowledge on the antimicrobial properties of chitosan, list alternative sources of chitin to highlight the potential of these two polymers and encourage further research.


2017 ◽  
Vol 18 (2) ◽  
pp. 136-152 ◽  
Author(s):  
Jian Sun ◽  
Ximin Zeng ◽  
Xing-Ping Li ◽  
Xiao-Ping Liao ◽  
Ya-Hong Liu ◽  
...  

AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.


Sign in / Sign up

Export Citation Format

Share Document