scholarly journals Red Seaweed Pigments from a Biotechnological Perspective

Phycology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-29
Author(s):  
Marta V. Freitas ◽  
Diana Pacheco ◽  
João Cotas ◽  
Teresa Mouga ◽  
Clélia Afonso ◽  
...  

Algae taxa are notably diverse regarding pigment diversity and composition, red seaweeds (Rhodophyta) being a valuable source of phycobiliproteins (phycoerythrins, phycocyanin, and allophycocyanin), carotenes (carotenoids and xanthophylls), and chlorophyll a. These pigments have a considerable biotechnological potential, which has been translated into several registered patents and commercial applications. However, challenges remain regarding the optimization and subsequent scale-up of extraction and purification methodologies, especially when considering the quality and quantity needs, from an industrial and commercial point of view. This review aims to provide the state-of-the-art information on each of the aforementioned groups of pigments that can be found within Rhodophyta. An outline of the chemical biodiversity within pigment groups, current extraction and purification methodologies and challenges, and an overview of commercially available products and registered patents, will be provided. Thus, the current biotechnological applications of red seaweeds pigments will be highlighted, from a sustainable and economical perspective, as well as their integration in the Blue Economy.

Life ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 19 ◽  
Author(s):  
João Cotas ◽  
Adriana Leandro ◽  
Diana Pacheco ◽  
Ana M. M. Gonçalves ◽  
Leonel Pereira

The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds’ compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Krishna Prasad Rajan1 ◽  
Selvin P. Thomas12 ◽  
Aravinthan Gopanna2 ◽  
Ahmed Al-Ghamdi1 ◽  
Murthy Chavali3

Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


Author(s):  
Alexandru-Lucian Georgescu ◽  
Alessandro Pappalardo ◽  
Horia Cucu ◽  
Michaela Blott

AbstractThe last decade brought significant advances in automatic speech recognition (ASR) thanks to the evolution of deep learning methods. ASR systems evolved from pipeline-based systems, that modeled hand-crafted speech features with probabilistic frameworks and generated phone posteriors, to end-to-end (E2E) systems, that translate the raw waveform directly into words using one deep neural network (DNN). The transcription accuracy greatly increased, leading to ASR technology being integrated into many commercial applications. However, few of the existing ASR technologies are suitable for integration in embedded applications, due to their hard constrains related to computing power and memory usage. This overview paper serves as a guided tour through the recent literature on speech recognition and compares the most popular ASR implementations. The comparison emphasizes the trade-off between ASR performance and hardware requirements, to further serve decision makers in choosing the system which fits best their embedded application. To the best of our knowledge, this is the first study to provide this kind of trade-off analysis for state-of-the-art ASR systems.


2021 ◽  
Vol 11 (10) ◽  
pp. 4628
Author(s):  
Macarena Iniesta-Pallarés ◽  
Consolación Álvarez ◽  
Francisco M. Gordillo-Cantón ◽  
Carmen Ramírez-Moncayo ◽  
Pilar Alves-Martínez ◽  
...  

Current agricultural productivity depends on an exogenous nutrient supply to crops. This is of special relevance in cereal production, a fundamental part of the trophic chain that plays a vital role in the human diet. However, our agricultural practices entail highly detrimental side-effects from an environmental point of view. Long-term nitrogen fertilization in croplands results in degradation of soil, water, and air quality, producing eutrophication and subsequently contributing to global warming. In accordance with this, there is a biotechnological interest in using nitrogen-fixing microorganisms to enhance crop growth without adding chemically synthesized nitrogen fertilizers. This is particularly beneficial in paddy fields, where about 60% of the synthetic fertilizer that has been applied is dissolved in the water and washed away. In these agricultural systems, N2-fixing cyanobacteria show a promising biotechnological potential as biofertilizers, improving soil fertility while reducing the environmental impact of the agricultural practice. In the current study, Andalusian paddy fields have been explored to isolate N2-fixing cyanobacteria. These endogenous microorganisms have been subsequently re-introduced in a field trial in order to enhance rice production. Our results provide valuable insights regarding the use of an alternative natural source of nitrogen for rice production.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 897
Author(s):  
Neda Amanat ◽  
Bruna Matturro ◽  
Marta Maria Rossi ◽  
Francesco Valentino ◽  
Marianna Villano ◽  
...  

The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was higher than that obtained with the other tested materials, made of extracted and purified PHA. These results clearly suggest the possibility to directly use the PHA-rich cells deriving from the MMC production process, with no need of extraction and purification procedures, as a sustainable and effective carbon source bringing remarkable advantages from an economic and environmental point of view.


2021 ◽  
Vol 13 (5) ◽  
pp. 2472
Author(s):  
Teodora Stillitano ◽  
Emanuele Spada ◽  
Nathalie Iofrida ◽  
Giacomo Falcone ◽  
Anna Irene De Luca

This study aims at providing a systematic and critical review on the state of the art of life cycle applications from the circular economy point of view. In particular, the main objective is to understand how researchers adopt life cycle approaches for the measurement of the empirical circular pathways of agri-food systems along with the overall lifespan. To perform the literature review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was considered to conduct a review by qualitative synthesis. Specifically, an evaluation matrix has been set up to gather and synthesize research evidence, by classifying papers according to several integrated criteria. The literature search was carried out employing scientific databases. The findings highlight that 52 case studies out of 84 (62% of the total) use stand-alone life cycle assessment (LCA) to evaluate the benefits/impacts of circular economy (CE) strategies. In contrast, only eight studies (9.5%) deal with the life cycle costing (LCC) approach combined with other analyses while no paper deals with the social life cycle assessment (S-LCA) methodology. Global warming potential, eutrophication (for marine, freshwater, and terrestrial ecosystems), human toxicity, and ecotoxicity results are the most common LCA indicators applied. Only a few articles deal with the CE assessment through specific indicators. We argue that experts in life cycle methodologies must strive to adopt some key elements to ensure that the results obtained fit perfectly with the measurements of circularity and that these can even be largely based on a common basis.


2021 ◽  
Vol 7 (1) ◽  
pp. 51
Author(s):  
Allen Grace Niego ◽  
Olivier Raspé ◽  
Naritsada Thongklang ◽  
Rawiwan Charoensup ◽  
Saisamorn Lumyong ◽  
...  

The oudemansielloid/xeruloid taxa Hymenopellis, Mucidula, Oudemansiella, and Xerula are genera of Basidiomycota that constitute an important resource of bioactive compounds. Numerous studies have shown antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory and other bioactivities of their extracts. The bioactive principles can be divided into two major groups: (a) hydrophilic polysaccharides with relatively high molecular weights and (b) low molecular medium polar secondary metabolites, such as the antifungal strobilurins. In this review, we summarize the state of the art on biodiversity, cultivation of the fungi and bioactivities of their secondary metabolites and discuss future applications. Although the strobilurins are well-documented, with commercial applications as agrochemical fungicides, there are also other known compounds from this group that have not yet been well-studied. Polysaccharides, dihydro-citrinone phenol A acid, scalusamides, and acetylenic lactones such as xerulin, also have potential applications in the nutraceutical, pharmaceutical and medicinal market and should be further explored. Further studies are recommended to isolate high quality bioactive compounds and fully understand their modes of action. Given that only few species of oudemansielloid/xeruloid mushrooms have been explored for their production of secondary metabolites, these taxa represent unexplored sources of potentially useful and novel bioactive metabolites.


2001 ◽  
Vol 54 (1) ◽  
pp. 69-92 ◽  
Author(s):  
Igor V. Andrianov ◽  
Jan Awrejcewicz

In this review article, we present in some detail new trends in application of asymptotic techniques to mechanical problems. First we consider the various methods which allows for the possibility of extending the perturbation series application space and hence omiting their local character. While applying the asymptotic methods very often the following situation appears: an existence of the asymptotics ε → 0 implies an existence of the asymptotics ε → ∞ (or, in a more general sense, ε → a and ε → b). Therefore, an idea of constructing a single solution valid for a whole interval of parameter ε changes is very attractive. In other words, we discuss a problem of asymptotically equivalent function constructions possessing for ε → a and ε → b a known asymptotic behavior. The defined problems are very important from the point of view of both theoretical and applied sciences. In this work, we review the state-of-the-art, by presenting the existing methods and by pointing out their advantages and disadvantages, as well as the fields of their applications. In addition, some new methods are also proposed. The methods are demonstrated on a wide variety of static and dynamic solid mechanics problems and some others involving fluid mechanics. This review article contains 340 references.


Sign in / Sign up

Export Citation Format

Share Document