scholarly journals Genome Wide Analysis of Amino Acid Transporter Superfamily in Solanum lycopersicum

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 289
Author(s):  
Fatima Omari Alzahrani

Amino acid transporters (AATs) are integral membrane proteins and have several functions, including transporting amino acids across cellular membranes. They are critical for plant growth and development. This study comprehensively identified AAT-encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and serves as a model for fleshy fruit development. In this study, 88 genes were identified in the S. lycopersicum genome and grouped into 12 subfamilies, based on previously identified AATs in Arabidopsis, rice (Oryza sativa), and potato (Solanum tuberosum) plants. Chromosomal localization revealed that S. lycopersicum AAT (SlAAT) genes are distributed on the 12 S. lycopersicum chromosomes. Segmental duplication events contribute mainly to the expansion of SlAAT genes and about 32% (29 genes) of SlAAT genes were found to originate from this type of event. Expression profiles of SlAAT genes in various tissues of S. lycopersicum using RNA sequencing data from the Tomato Functional Genomics Database showed that SlAAT genes exhibited tissue-specific expression patterns. Comprehensive data generated in this study will provide a platform for further studies on the SlAAT gene family and will facilitate the functional characterization of SlAAT genes.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jing Ma ◽  
Jia-xi Dai ◽  
Xiao-wei Liu ◽  
Duo Lin

Abstract Background BBX transcription factors are a kind of zinc finger transcription factors with one or two B-box domains, which partilant in plant growth, development and response to abiotic or biotic stress. The BBX family has been identified in Arabidopsis, rice, tomato and some other model plant genomes. Results Here, 24 CaBBX genes were identified in pepper (Capsicum annuum L.), and the phylogenic analysis, structures, chromosomal location, gene expression patterns and subcellular localizations were also carried out to understand the evolution and function of CaBBX genes. All these CaBBXs were divided into five classes, and 20 of them distributed in 11 of 12 pepper chromosomes unevenly. Most duplication events occurred in subgroup I. Quantitative RT-PCR indicated that several CaBBX genes were induced by abiotic stress and hormones, some had tissue-specific expression profiles or differentially expressed at developmental stages. Most of CaBBX members were predicated to be nucleus-localized in consistent with the transient expression assay by onion inner epidermis of the three tested CaBBX members (CaBBX5, 6 and 20). Conclusion Several CaBBX genes were induced by abiotic stress and exogenous phytohormones, some expressed tissue-specific and variously at different developmental stage. The detected CaBBXs act as nucleus-localized transcription factors. Our data might be a foundation in the identification of CaBBX genes, and a further understanding of their biological function in future studies.


2018 ◽  
Vol 19 (10) ◽  
pp. 3246 ◽  
Author(s):  
Jianbo Li ◽  
Jin Zhang ◽  
Huixia Jia ◽  
Zhiqiang Yue ◽  
Mengzhu Lu ◽  
...  

Small heat shock proteins (sHsps) function mainly as molecular chaperones that play vital roles in response to diverse stresses, especially high temperature. However, little is known about the molecular characteristics and evolutionary history of the sHsp family in Salix suchowensis, an important bioenergy woody plant. In this study, 35 non-redundant sHsp genes were identified in S. suchowensis, and they were divided into four subfamilies (C, CP, PX, and MT) based on their phylogenetic relationships and predicted subcellular localization. Though the gene structure and conserved motif were relatively conserved, the sequences of the Hsp20 domain were diversified. Eight paralogous pairs were identified in the Ssu-sHsp family, in which five pairs were generated by tandem duplication events. Ka/Ks analysis indicated that Ssu-sHsps had undergone purifying selection. The expression profiles analysis showed Ssu-Hsps tissue-specific expression patterns, and they were induced by at least one abiotic stress. The expression correlation between two paralogous pairs (Ssu-sHsp22.2-CV/23.0-CV and 23.8-MT/25.6-MT) were less than 0.6, indicating that they were divergent during the evolution. Various cis-acting elements related to stress responses, hormone or development, were detected in the promoter of Ssu-sHsps. Furthermore, the co-expression network revealed the potential mechanism of Ssu-sHsps under stress tolerance and development. These results provide a foundation for further functional research on the Ssu-sHsp gene family in S. suchowensis.


2019 ◽  
Vol 20 (23) ◽  
pp. 5855 ◽  
Author(s):  
Tianran Shi ◽  
Vijay Joshi ◽  
Madhumita Joshi ◽  
Stanislav Vitha ◽  
Holly Gibbs ◽  
...  

Watermelon fruit contains a high percentage of amino acid citrulline (Cit) and arginine (Arg). Cit and Arg accumulation in watermelon fruit are most likely mediated by both de novo synthesis from other amino acids within fruits and direct import from source tissues (leaves) through the phloem. The amino acid transporters involved in the import of Cit, Arg, and their precursors into developing fruits of watermelon have not been reported. In this study, we have compiled the list of putative amino acid transporters in watermelon and characterized transporters that are expressed in the early stage of fruit development. Using the yeast complementation study, we characterized ClAAP3 (Cla023187) and ClAAP6 (Cla023090) as functional amino acid transporters belonging to the family of amino acid permease (AAP) genes. The yeast growth and uptake assays of radiolabeled amino acid suggested that ClAAP3 and ClAAP6 can transport a broad spectrum of amino acids. Expression of translational fusion proteins with a GFP reporter in Nicotiana benthamiana leaves confirmed the ER- and plasma membrane-specific localization, suggesting the role of ClAAP proteins in the cellular import of amino acids. Based on the gene expression profiles and functional characterization, ClAAP3 and ClAAP6 are expected to play a major role in regulation of amino acid import into developing watermelon fruits.


2021 ◽  
Author(s):  
Siwen Liu ◽  
Bangting Wu ◽  
Yanling Xie ◽  
Sijun Zheng ◽  
Jianghui Xie ◽  
...  

Abstract Potassium is one of the most essential inorganic cations for plant growth and development. The high affinity K+ (HAK)/K+ uptake (KUP)/K+ transporter (KT) family plays essential roles in the regulation of cellular K+ levels and the maintenance of osmotic balance. However, the roles of these genes in the responses of bananas to low-potassium stress are unclear. In this study, 24 HAK/KUP/KT (MaHAK) genes were identified from banana genomic data. These genes were further classified into four groups based on phylogenetic analysis, gene structure and conserved domain analysis. Segmental duplication events played an important role in the expansion of the MaHAK gene family. Transcriptome analysis revealed the expression patterns of MaHAKs in various tissues under different K+ conditions. MaHAK14b was upregulated under both short- and long-term K+-deficient conditions, suggesting that it plays crucial roles in K+ uptake at low K+ concentrations. Furthermore, MaHAK14b mediated K+ uptake when it was heterologously expressed in the yeast mutant R5421 on low K+ medium. Collectively, these findings provide a foundation for further functional analysis of MaHAK genes, which may be used to improve stress resistance in bananas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tongyu Feng ◽  
Xuelian He ◽  
Renying Zhuo ◽  
Guirong Qiao ◽  
Xiaojiao Han ◽  
...  

AbstractCd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.


2019 ◽  
Author(s):  
kaifa wei ◽  
YiXuan Li

Abstract The cytochrome P450s (CYP450s) as the largest enzyme family of plant metabolism participate in various physiological processes, whereas no study has demonstrated interest in comprehensive comparison of the genes in wheat and maize. Genome-wide survey, characterization and comparison of wheat and maize CYP450 gene superfamily are useful for genetic manipulation of the Gramineae crops. Results In total, 1285 and 263 full-length CYP450s were identified in wheat and maize, respectively. According to standard nomenclature, wheat CYP450s (TaCYP450s) were categorized into 45 families, while maize CYP450s (ZmCYP450s) into 43 families. Of maize CYP450s, there are 108 duplicated gene pairs and 134 genes had their syntenic counterparts in rice genome, and a total of 140 duplication events were predicted in wheat CYP450s. Functional divergence analysis at the amino acid level of representative clans CYP51, CYP74 and CYP97 in wheat, maize and rice identified some critical amino acid sites that are responsible for functional divergence of a gene family. Expression profiles of Ta-, ZmCYP450s were investigated using RNA-seq data, and we found the majority of them showed tissue-specific expression patterns such as TaCYP51H39_5B in root; TaCYP74A98_4A in leaf at cotyledon emergence stage (LCE); TaCYP71C162_5A in fruit at whole plant fruit ripening stage (FR); ZmCYP707A5 in root; ZmCYP76B18 in tassel; ZmCYP78A130 in embryo. Under water-deficit condition, 82 and 39 significantly differentially expressed CYP450s were respectively detected in wheat and maize like TaCYP71Y18_1D, TaCYP707A5_6A, TaCYP71R11_1A, TaCYP97B4_6D, ZmCYP81N4, ZmCYP81A1 and ZmCYP71C62, of which TaCYP71Y18_1D and ZmCYP81N4 were the genes most highly induced by drought treatment. Fourteen CYP450s were selected to validate their expression level through qRT-PCR. In total, 477 TaCYP450s were distributed in 22 co-expression modules, and some co-expressed genes that likely take part in the same biochemical pathway were identified. For instance, the expression of TaCYP74A98_4D was highly correlated with TaLOX9, TaLOX36, TaLOX39, TaLOX44 and TaOPR8, and all of them may be involved in jasmonate (JA) biosynthesis. TaCYP73A201_3A showed coexpression with TaPAL1.25, TaCCoAOMT1.2, TaCOMT.1, TaCCR1.6 and TaLAC5, which probably act in the wheat stem and/or root lignin synthesis pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqian Zhang ◽  
Chang Li ◽  
Bingzhou Zhang ◽  
Zhonghua Li ◽  
Wei Zeng ◽  
...  

AbstractThe variant virulent porcine epidemic diarrhea virus (PEDV) strain (YN15) can cause severe porcine epidemic diarrhea (PED); however, the attenuated vaccine-like PEDV strain (YN144) can induce immunity in piglets. To investigate the differences in pathogenesis and epigenetic mechanisms between the two strains, differential expression and correlation analyses of the microRNA (miRNA) and mRNA in swine testicular (ST) cells infected with YN15, YN144, and mock were performed on three comparison groups (YN15 vs Control, YN144 vs Control, and YN15 vs YN144). The mRNA and miRNA expression profiles were obtained using next-generation sequencing (NGS), and the differentially expressed (DE) (p-value < 0.05) mRNA and miRNA were obtained using DESeq R package. mRNAs targeted by DE miRNAs were predicted using the miRanda algortithm. 8039, 8631 and 3310 DE mRNAs, and 36, 36, and 22 DE miRNAs were identified in the three comparison groups, respectively. 14,140, 15,367 and 3771 DE miRNA–mRNA (targeted by DE miRNAs) interaction pairs with negatively correlated expression patterns were identified, and interaction networks were constructed using Cytoscape. Six DE miRNAs and six DE mRNAs were randomly selected to verify the sequencing data by real-time relative quantitative reverse transcription polymerase chain reaction (qRT-PCR). Based on bioinformatics analysis, we discovered the differences were mostly involved in host immune responses and viral pathogenicity, including NF-κB signaling pathway and bacterial invasion of epithelial cells, etc. This is the first comprehensive comparison of DE miRNA–mRNA pairs in YN15 and YN144 infection in vitro, which could provide novel strategies for the prevention and control of PED.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cuimei Zhao ◽  
Jingjing Liu ◽  
Wen Ge ◽  
Zhi Li ◽  
Mengwei Lv ◽  
...  

BackgroundAcute myocardial infarction (AMI) has high morbidity and mortality worldwide. However, the pathogenesis of AMI is still unclear, and the impact of circular RNAs (circRNAs) on AMI has rarely been recognized and needs to be explored.Materials and MethodsThe circRNA array was applied to investigate the expression level of circRNAs in the blood samples of coronary arteries of three AMI patients and three normal persons. Principal component analysis (PCA) and unsupervised clustering analysis were performed to reveal the distinguished expression patterns of circRNAs. The miRNA expression profiles of AMI patients were identified from a public dataset from the Gene Expression Omnibus (GEO) database (GSE31568). The miRNA binding sites on the circRNAs were predicted by miRanda. The miRNA enrichment analysis and annotation tool were used to explore the pathways that the dysregulated circRNAs may participate in.ResultsIn total, 142 differentially expressed circRNAs, including 89 upregulated and 53 downregulated in AMI samples, were identified by the differential expression analysis. AMI patients had quite different circRNA expression profiles to those of normal controls. Functional characterization revealed that circRNAs that had the potential to regulate miRNAs were mainly involved in seven pathways, such as the Runt-related transcription factor-1 (RUNX1) expression and activity-related pathway. Specifically, hsa_circRNA_001654, hsa_circRNA_091761, hsa_circRNA_405624, and hsa_circRNA_406698 were predicted to sponge four miRNAs including hsa-miR-491-3p, hsa-miR-646, hsa-miR-603, and hsa-miR-922, thereby regulating RUNX1 expression or activity.ConclusionWe identified dysregulated blood circRNAs in the coronary arteries of AMI patients and predicted that four upregulated circRNAs were involved in the regulation of RUNX1 expression or activity through sponging four miRNAs.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Chenghao Zhang ◽  
Wenqi Dong ◽  
Zong-an Huang ◽  
MyeongCheoul Cho ◽  
Qingcang Yu ◽  
...  

Auxin plays key roles in regulating plant growth and development as well as in response to environmental stresses. The intercellular transport of auxin is mediated by the following four gene families: ATP-binding cassette family B (ABCB), auxin resistant1/like aux1 (AUX/LAX), PIN-formed (PIN), and PIN-like (PILS). Here, the latest assembled pepper (Capsicum annuum L.) genome was used to characterise and analyse the CaLAX and CaPIN gene families. Genome-wide investigations into these families, including chromosomal distributions, phytogenic relationships, and intron/exon structures, were performed. In total, 4 CaLAX and 10 CaPIN genes were mapped to 10 chromosomes. Most of these genes exhibited varied tissue-specific expression patterns assessed by quantitative real-time PCR. The expression profiles of the CaLAX and CaPIN genes under various abiotic stresses (salt, drought, and cold), exogenous phytohormones (IAA, 6-BA, ABA, SA, and MeJA), and polar auxin transport inhibitor treatments were evaluated. Most CaLAX and CaPIN genes were altered by abiotic stress at the transcriptional level in both shoots and roots, and many CaLAX and CaPIN genes were regulated by exogenous phytohormones. Our study helps to identify candidate auxin transporter genes and to further analyse their biological functions in pepper development and in its adaptation to environmental stresses.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 914
Author(s):  
Shan ◽  
Zhang ◽  
Yu ◽  
Wang ◽  
Li ◽  
...  

Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.


Sign in / Sign up

Export Citation Format

Share Document