scholarly journals Impact of Superabsorbent Polymers and Variety on Yield, Quality and Physiological Parameters of the Sugar Beet (Beta vulgaris prov. Altissima Doell)

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 757
Author(s):  
Vladimír Pačuta ◽  
Marek Rašovský ◽  
Beata Michalska-Klimczak ◽  
Zdzislaw Wyszyňski

In this study, we focus on the mitigation of the negative impact of drought using the application of superabsorbent polymers (SAPs) to seed. One way to monitor drought and quantify its impact on crops in field conditions is the nondestructive measurement of physiological processes of the crops using spectral indexes LAI and PRI during vegetation. Therefore, during 2018 and 2019, the increase in biomass and intensity of photosynthetic activity was monitored, and the effect of the SAPs application on the yield parameters of the sugar beet was evaluated in the trial conditions (control, SAPs) at the end of the vegetation period. Through statistical analysis, the significant impact (α ≤ 0.01) of SAPs application on the values of spectral indexes LAI and PRI as well as root and white sugar yields was found. Although the sugar content difference between SAPs and control conditions was not statistically significant, SAPs had a positive influence on the value of this parameter. It was found through periodic monitoring of spectral indexes during the growing period that the crop in the SAPs condition showed higher values of PRI at the beginning of vegetation, which was caused by the accumulation of moisture in the vicinity of the seed and subsequent faster growth of roots and photosynthetic apparatus. Moreover, the values of LAI were significantly higher (α ≤ 0.01) in the SAPs condition throughout the vegetation period. In the interaction evaluation, we confirmed that in both years the values of LAI were higher in the condition with SAPs compared with the control. In contrast, the PRI values were significantly different across conditions. The interaction of conditions with variety showed that the variety Brian obtained higher values of LAI and PRI in the SAPs condition. The correlation analysis found a positive correlation between spectral indexes LAI:PRI (r = 0.6184**), and between LAI:RY (r = 0.6715**), LAI:WSY (r = 0.5760**), and PRI:RY (r = 0.5038*), which confirms the close relationship between physiological processes in the plant and the size of its yield.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1287
Author(s):  
Natalya A. Semenova ◽  
Alexandr A. Smirnov ◽  
Andrey A. Grishin ◽  
Roman Y. Pishchalnikov ◽  
Denis D. Chesalin ◽  
...  

The effects of different spectral compositions of light-emitting diode (LED) sources and fertilizer containing biologically active silicon (Si) in the nutrient solution on morphological and physiological plant response were studied. Qualitative indicators and the productivity of plants of a red-leaved and a green-leaved lettuce were estimated. Lettuce was grown applying low-volume hydroponics in closed artificial agroecosystems. The positive effect of Si fertilizer used as a microadditive in the nutrient solution on the freshly harvested biomass was established on the thirtieth day of vegetation under LEDs. Increase in productivity of the red-leaved lettuce for freshly harvested biomass was 26.6%, while for the green-leaved lettuce no loss of dry matter was observed. However, being grown under sodium lamps, a negative impact of Si fertilizer on productivity of both types of plants was observed: the amount of harvested biomass decreased by 22.6% and 30.3% for the green- and red-leaved lettuces, respectively. The effect of using Si fertilizer dramatically changed during the total growing period: up to the fifteenth day of cultivation, a sharp inhibition of the growth of both types of lettuce was observed; then, by the thirtieth day of LED lighting, Si fertilizer showed a stress-protective effect and had a positive influence on the plants. However, by the period of ripening there was no effect of using the fertilizer. Therefore, we can conclude that the use of Si fertilizers is preferable only when LED irradiation is applied throughout the active plant growth period.


2017 ◽  
Vol 63 (No. 2) ◽  
pp. 76-81 ◽  
Author(s):  
Pavlů Klára ◽  
Chochola Jaromír ◽  
Pulkrábek Josef ◽  
Urban Jaroslav

Small-plot trials conducted in 2013–2015 studied the impact of longer vegetation periods (by means of earlier drilling and/or later harvest) on production results of two sugar beet cultivars – one nematode-tolerant cultivar and one cultivar without such tolerance. The trials took place at two sites with different Heterodera schachtii infestation levels. In all trial seasons, root yield was significantly higher in the earlier drilled plots. On average, prolongation of the vegetation period in spring by 13 days increased root yield by 10.9%. Therefore, each day by which drilling is postponed represents a 0.7–0.8% loss of yield. As to sugar content, no statistically significant benefit of vegetation period prolongation by early drilling was found. The spring gain was slightly higher for the non-tolerant cultivar than for the tolerant one on average over all trial seasons. This result confirms the theory that nematodes impact the crop mainly in later stages of vegetation, and early drilling can thus help eliminating, to a certain degree, the risk of nematode damage. In the autumn, root yield increased by 14.3% on average over 39 days. The autumn daily gain was about half of the rate found in the spring. The increase in sugar content was between 0.6% and 1% (abs.) on average. Autumn growth achieved at the non-infested site was much higher than at the infested site.  


Climate ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 46
Author(s):  
Maria G. Lebedeva ◽  
Anthony R. Lupo ◽  
Alexandr B. Solovyov ◽  
Yury G. Chendev ◽  
Lalith M. Rankoth

The weather and climate conditions contributing to the energy and water availability during the sugar beet vegetation period within the Belgorod Region were studied. It was found that the sugar beet yield in the region currently depends on the climate at the 15% level. The variability and trends of sugar beet yields and sugar content dynamics correlated with that of the observed during a 60-year period are determined using statistical techniques such as correlation, and regression and time series analysis. The variation for the sugar content (or “sugariness”) over this period as related to the regional weather and climate showed a nonlinear relationship. The sugar content is related inversely to the combined (via the Hydrothermal Coefficient—HTC) influence of precipitation and temperature during the warm season (temperatures between 15 and 20 °C). A decrease (increase) in HTC contributes to an increase (decrease) in the beet sugar content. However, it was noted that during sugar content increases, there is a decrease in the regional sugar beet yield. We can conclude that the increased sugar content of beet in relevant years compensates for the decrease in the yield parameter. Finally, there was a correlation between the regional variability in the sugar content of beets with Bruckner solar cycles and atmospheric teleconnections in that during warm and dry periods, the sugar content increases, and for cold and wet periods is reduced.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 232-236
Author(s):  
M. Pytlarz-Kozicka

Sugar beet yielding and, thus, the profitability of its cultivation depends on various conditions. These are mainly a&nbsp;dose of nitrogen fertilizing and anti-fungal plant protection. Based on the research carried out in a private-owned farm in Biała commune, Opole province, Poland, it was observed that the most important factors influencing plant development and root yield of sugar beets (var. Kassandra and Cortina) were genetic features of the investigated varieties and fungal control. They increased considerably root yield and sugar content. The doubled nitrogen dose from 90 to 180 kg N/ha enhanced a slight, statistically insignificant, root yield increase and a lower sugar content in beet roots. The three-year research showed that weather conditions during the vegetation period had a decisive effect on sugar beet plants development and fungal infestation. The variety Cortina was characterized with a significantly higher yield and a higher content of treacle forming compounds in the roots. The increase of N rate from 90 to 180 kg N/ha caused a significant increase of average root mass, leaves and dry matter yield and potassium and N-NH<sub>2</sub> in roots, but it also lowered sugar content. In the years with favorable conditions for fungal infestation, the use of fungicides helped to obtain a higher leaf/root ratio, higher root mass, higher root and leaf yield and higher dry matter and sugar yields. However, it did not have an effect on the content of chemical compounds producing treacle in sugar beet roots.


Author(s):  
A. Melnyk ◽  
M. Kyryk

Goal. was to research biological preparations efficiency usage in alternaria blight harmfulness decrease and to develop effective cultivar protection system. Methods. Field and laboratory — vegetative researches. Tubers were treated by allowed biological preparations as Lists of pesticides: Planrise (Pseudomonas fluorescens, strain AR-33), Phytodoctor (Bacillus subtilis); MicoHelp (Trichoderma, Bacillus subtilis, Azotobacter, Enterobacter, Enterococcus) for disease developing decrease. The present preparations were used for spraying in future. The treating during the growing period favoured the plant organism resistance to stress conditions of environment. The first plant treating was conducted at the blossoming beginning before alternaria blight appearing on plant’s leaves plants. The second spraying was conducted during the first spots appearing on the plates of early potato varieties. Results. The researches results biological preparations: Planrise, Phytodoctor, MicoHelp treating potato defeated plants by alternaria blight were proposed. The biological preparations relative high efficiency was determined. Conclusions. The researched preparations technical efficiency was also depended upon the conducting testing variety. The biological preparation MicoHelp (variety Serpanok) showed the highest technical efficiency (46.2%) during the plant treating against potato alternaria blight. The preparation MicoHelp (variety Svitanok Kyivskyi) showed the highest efficiency during the potato treating in vegetation period. So the biological control protection means usage in the modern potato varieties allows to decrease negative impact of used preparations and put into production effective and ecologically — friendly means for alternaria blight limit in terms of Western Foreststeppe of Ukraine.


Author(s):  
Ya. P. Makukh ◽  
S. O. Remeniuk ◽  
S. V. Moshkivska ◽  
V. M. Riznyk

Purpose. Establish the impact of basic tillage and weed protection measures on soil density in winter wheat and sugar beet crops. Investigate the criteria for the formation of winter wheat and sugar beet productivity depending on weather conditions, measures of basic tillage and protection against weeds. Methods. Field, laboratory. Results. Soil density for the period of winter wheat harvesting for plowing to a depth of 20–22 cm and direct sowing was in the same range at the level of 1.22 and 1.23 g/cm3, which can be explained by the peculiarity of the soil and the root system of the plants themselves. In sugar beet crops, the combination of plowing to a depth of 25–27 cm with subsequent shelfless loosening at 34–36 cm makes it possible to maintain the density of the arable soil at the level of equilibrium for this type of soil. In other treatments, the soil density increases to 1.27 and 1.28 g/cm3, with compaction of the upper 0–10 cm layer of soil to 1.25 g/cm3 for plowing by 30–32 cm and 1.29 g/cm3 – for shelf-free loosening by 34–36 cm, which has a negative impact on the productivity of sugar beets. Conclusions. With the optimal sowing period for the conditions of Kyiv region on September 12–15, the most optimal sowing rate remains 4.5 million units. nas./ha, for increase in density of standing of plants we note lodging of plants and damp years and essential shortage of grain in arid. According to our research, the main tillage for winter wheat plowing by 20–22 cm remains the most rational for obtaining stable yields of winter wheat (yield was 5.03 t/ha). At the same time, good predecessors of peas for grain, rape, buckwheat can be used direct sowing with the introduction of herbicide continuous action Roundup, 48% v.r. 3.0 l/ha. The highest productivity of sugar beets was obtained by using the main tillage plowing by 25–27 cm + shelfless loosening by 34–36 cm yield of root crops at the level of 52.13–51.73 t/ha, sugar content – 14.80–14.83%, sugar harvest – 7.73–7.81 t/ha. On deep medium loam chernozems, this tillage allows to ensure optimal agrophysical indicators of the soil, remove the plow sole, earn crop residues and ensure yields in arid conditions. Application of sugar-free loosening to sugar beets to a depth of 34–36 cm reduces the yield of root crops by 5.32 and 7.20 t/ha compared to plowing to a depth of 30–32 cm, which is associated with an increase in weediness of crops and soil density.


2015 ◽  
Vol 2 (1) ◽  
pp. 12-22 ◽  
Author(s):  
L. Pylypenko ◽  
K. Kalatur

Heterodera schachtii Schmidt, 1871 is one of the most economically important pests of sugar beet (Beta vulgaris L.) worldwide. It is also widespread in most sugar beet growing regions in Ukraine causing serious yield reduction and decreasing sugar content of sugar beet in infested fi elds. An advanced parasitic strategy of H. schachtii is employed to support nematode growth, reproduction and harmfulness. In intensive agriculture systems the nematode control measures heavily rely on nematicides and good agricultural practice (crop rota- tion in the fi rst place). But alternative strategies based on nematode resistant sugar beet cultivars and hybrids are required as none of nematicides approved for the open fi eld application are registered in Ukraine. Here we review the achievements and problems of breeding process for H. schachtii resistance and provide the results of national traditional breeding program. Since the beginning of 1980s fi ve sugar beet cultivars (Verchnyatskyi 103, Yaltuschkivska 30, Bilotcerkivska 45, BTs-40 and Yuvileynyi) and seventeen lines partly resistant or toler- ant to H. schachtii have been obtained throughout targeted crossing and progenies assessment in the infested fi elds. The further directions for better utilization of genetic sources for nematode resistance presented in na- tional gene bank collection are emphasized. There is a need for more accurate identifi cation of resistance genes, broader application of reliable molecular markers (suitable for marker-assisted selection of nematode resistant plants in the breeding process) and methods for genetic transformation of plants. Crop cash value and national production capacity should drive the cooperation in this fi eld. Knowledge as well as germplasm exchange are thereby welcomed that can benefi t breeding progress at national and international level.


2020 ◽  
Vol 1 (3) ◽  
pp. 133-155
Author(s):  
Kgomotlokoa Linda Thaba-Nkadimene ◽  
Maletšema Ruth Emsley

The challenges of reading experienced by learners exerts a negative impact on reading for pleasure, and learners' outcomes. In an attempt to address such reading challenges, Reading Clubs were launched to promote reading for pleasure among South African youth. This study examines the influence of Reading Clubs on learners' attitudes to Reading for Pleasure and the outcomes thereof. The study was informed by the Top-Down Model of Reading and the Cultural Theory of reading for pleasure. Interviews were conducted in five purposively selected schools with five Sparker coaches and five teachers. The research findings reveal a positive influence of Reading Clubs on reading for pleasure and learners' outcomes. This is reflected through improved levels of reading for pleasure. This study ultimately recommends that schools learn from best practices of Reading Clubs, and that government strive to make Reading Clubs a sustainable project.


2012 ◽  
pp. 102-109
Author(s):  
Suzana Kristek ◽  
Andrija Kristek ◽  
Dragana Kocevski ◽  
Antonija K. Jankovi ◽  
Dražen Juriši

The experiment was set up on two types of the soil: Mollic Gleysols (FAO, 1998) and Eutric Cambisols where the presence of pathogenic fungi – sugar beet root decay agent – Rhizoctonia solani has been detected since 2005. In a two year study (2008, 2009), the experiment was set up by completely randomized block design in 4 repetitions and 16 different variants. Two beet varieties, Belinda, sensitive to pathogenic fungi R. solani, and Laetitia, tolerant to pathogenic fungi R. solani), were grown. The microbiological preparation BactoFil was applied in different amounts in autumn and spring. In addition, the nitrogen fertilizer application, based on the results of soil analysis, was varied. The following parameters were tested: amount of infected and decayed plants, root yield, sugar content, sugar in molasses and sugar yield. The best results were obtained by applying the microbiological preparation BactoFil, and by 30% reduced nitrogen fertilizer application. Preparation dosage and time of application depended on soil properties.


2016 ◽  
pp. 625-632 ◽  
Author(s):  
Christa Hoffmann ◽  
Katharina Schnepel

Good storability of sugar beet is of increasing importance, not only to reduce sugar losses, but also with regard to maintaining the processing quality. Genotypic differences are found in storage losses. However, it is not clear to which extent damage may contribute to the genotypic response. The aim of the study was to quantify the effect of root tip breakage on storage losses of different genotypes. For that purpose, in 2012 and 2013, six sugar beet genotypes were grown in field trials at two locations. After lifting roots were damaged with a cleaning device. They were stored for 8 and 12 weeks, either under controlled conditions in a climate container at constant 8°C, or under ambient temperature in an outdoor clamp. The close correlation underlines that storage losses under controlled conditions (constant temperature) can well be transferred to conditions in practice with fluctuating temperature. The strongest impact on invert sugar accumulation and sugar loss after storage resulted from storage time, followed by damage and growing environment (year × growing site). Cleaning reduced soil tare but increased root tip breakage, in particular for genotypes with low marc content. During storage, pathogen infestation and invert sugar content of the genotypes increased with root tip breakage, but the level differed between growing environments. Sugar loss was closely related to invert sugar accumulation for all treatments, genotypes and environments. Hence, it can be concluded that root tip breakage contributes considerably to storage losses of sugar beet genotypes, and evidently genotypes show a different susceptibility to root tip breakage which is related to their marc content. For long-term storage it is therefore of particular importance to avoid damage during the harvest operations and furthermore, to have genotypes with high storability and low susceptibility to damage.


Sign in / Sign up

Export Citation Format

Share Document