scholarly journals Antifungal Activity against Botryosphaeriaceae Fungi of the Hydro-Methanolic Extract of Silybum marianum Capitula Conjugated with Stevioside

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1363
Author(s):  
Natalia Langa-Lomba ◽  
Laura Buzón-Durán ◽  
Eva Sánchez-Hernández ◽  
Pablo Martín-Ramos ◽  
José Casanova-Gascón ◽  
...  

Silybum marianum (L.) Gaertn, viz. milk thistle, has been the focus of research efforts in the past few years, albeit almost exclusively restricted to the medicinal properties of its fruits (achenes). Given that other milk thistle plant organs and tissues have been scarcely investigated for the presence of bioactive compounds, in this study, we present a phytochemical analysis of the extracts of S. marianum capitula during the flowering phenological stage (stage 67). Gas chromatography–mass spectroscopy results evidenced the presence of high contents of coniferyl alcohol (47.4%), and secondarily of ferulic acid ester, opening a new valorization strategy of this plant based on the former high-added-value component. Moreover, the application of the hydro-methanolic extracts as an antifungal agent has been also explored. Specifically, their activity against three fungal species responsible for the so-called Botryosphaeria dieback of grapevine (Neofusicoccum parvum, Dothiorella viticola and Diplodia seriata) has been assayed both in vitro and in vivo. From the mycelial growth inhibition assays, the best results (EC90 values of 303, 366, and 355 μg·mL−1 for N. parvum, D. viticola, and D. seriata, respectively) were not obtained for the hydroalcoholic extract alone, but after its conjugation with stevioside, which resulted in a strong synergistic behavior. Greenhouse experiments confirmed the efficacy of the conjugated complexes, pointing to the potential of the combination of milk thistle extracts with stevioside as a promising plant protection product in organic Viticulture.

2015 ◽  
Vol 5 (1) ◽  
pp. 538-544
Author(s):  
Ivana Safrankova ◽  
Kolackova P ◽  
Rutivckova G

Milk thistle is grown in the Czech Republic as a medicinal herb; silymarin is isolated from its achenes and used for the production of liver and gallbladder medicine. The quality and content of the active compound is influenced not only by environmental factors, but also by pests and pathogens. The occurrence of pests of milk thistle variety Silyb was observed in two localities during the years 2011 2013. In the year 2011 the mycoflora of seeds of four milk thistle varieties was determined. Representatives of 15 species were isolated from the seeds, most of them saprophytic. 21 fungal species were isolated and identified from milk thistle plants during the vegetation; Septoria silybi among the most important ones. Possibilities of protection of milt thistle against pathogens are discussed.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Andra-Diana Andreicut ◽  
Alina Elena Pârvu ◽  
Augustin Cătălin Mot ◽  
Marcel Pârvu ◽  
Eva Fischer Fodor ◽  
...  

Oxidative stress and inflammation are interlinked processes. The aim of the study was to perform a phytochemical analysis and to evaluate the antioxidant and anti-inflammatory activities of ethanolic Mahonia aquifolium flower (MF), green fruit (MGF), and ripe fruit (MRF) extracts. Plant extract chemical composition was evaluated by HLPC. A DPPH test was used for the in vitro antioxidant activity. The in vivo antioxidant effects and the anti-inflammatory potential were tested on a rat turpentine oil-induced inflammation, by measuring serum nitric oxide (NOx) and TNF-alpha, total oxidative status (TOS), total antioxidant reactivity (TAR), oxidative stress index (OSI), 3-nitrothyrosine (3NT), malondialdehyde (MDA), and total thiols (SH). Extracts were administrated orally in three dilutions (100%, 50%, and 25%) for seven days prior to inflammation. The effects were compared to diclofenac. The HPLC polyphenol and alkaloid analysis revealed chlorogenic acid as the most abundant compound. All extracts had a good in vitro antioxidant activity, decreased NOx, TOS, and 3NT, and increased SH. TNF-alpha was reduced, and TAR increased only by MF and MGF. MDA was not influenced. Our findings suggest that M. aquifolium has anti-inflammatory and antioxidant effects that support the use in primary prevention of the inflammatory processes.


2006 ◽  
Vol 396 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Chrysoula Panethymitaki ◽  
Paul W. Bowyer ◽  
Helen P. Price ◽  
Robin J. Leatherbarrow ◽  
Katherine A. Brown ◽  
...  

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 μM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16–66 μM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


Author(s):  
RIDHI JOSHI ◽  
RISHIKESH MEENA ◽  
PREETI MISHRA ◽  
VIDYA PATNI

Objective: A normal-phase high-performance thin-layer chromatography (HPTLC) method has been developed and validated for estimation and quantitation of beta-sitosterol from the methanolic fraction of different plant parts of two medicinally important plants viz. Merremia aegyptia and Merremia dissecta. These plants have been reported to possess antimicrobial, antioxidant, and anti-inflammatory activities. Methods: Chromatographic separation of beta-sitosterol from the methanolic extracts of plant parts of M. aegyptia and M. dissecta was performed on TLC aluminum plates pre-coated with silica gel 60F254 using a suitable mobile phase. The densitometric scanning was done after derivatization at ????-580 nm for ????-sitosterol. Result: Only M. dissecta leaf sample was reported to contain ????-sitosterol (4.6 ng/μl), whereas other samples such as seed, stem, and callus extracts of M. aegyptia and M. dissecta did not showed its presence. Conclusion: The developed HPTLC method is simple, rapid, and precise and can be used for routine analysis and quantification of ????-sitosterol and other useful plant bioactives that are phytopharmaceutically important.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2393
Author(s):  
Xiuping Wang ◽  
Fei Peng ◽  
Caihong Cheng ◽  
Lina Chen ◽  
Xuejuan Shi ◽  
...  

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.


2021 ◽  
Author(s):  
Reinier Gesto-Borroto ◽  
Gabriela Meneses ◽  
Alejandro Espinosa-Cerón ◽  
Guillermo Granados ◽  
Jacquelynne Cervantes-Torres ◽  
...  

Abstract The genus Galphimia is widely distributed in Mexico, and is represented by 22 species, including medicinal species. The sedative and anti-inflammatory effects of galphimines produced by the species Galphimia glauca have been documented. Formerly, molecular studies using DNA barcodes demonstrated that nine populations botanically classified as Galphimia glauca belong to four different species of the genus Galphimia, and that only one exhibited the sedative properties; however, all the collected species showed anti-inflammatory activity. Other bioactive compounds like quercetin, galphins, galphimidins and glaucacetalins have been identified from methanolic extracts of plants botanically classified as Galphimia glauca. The aim of this work was to determine the anti-inflammatory activity of methanolic extracts of nine collected Galphimia spp. populations grown in Mexico. The possible modes of action were analyzed by evaluating the inhibition of LPS-induced inflammation processes both in vitro and in vivo. The nine populations were evaluated by an in vitro model using RAW 264.7 murine macrophage cells, and two populations (a galphimine-producing and a non-galphimine-producing population) were selected for the in vivo experiments of systemic inflammation and neuroinflammation in mice. Results suggest that an anti-inflammatory in vitro effect was present in all the studied populations, evidenced by the inhibition of nitrite production. An inhibitory systemic inflammation in mice was exerted by the two analyzed populations. In the neuroinflammation model, the anti-inflammatory effect was demonstrated in methanolic extract of the non-galphimine-producing population. For the populations of Galphimia spp. studied herein, the anti-inflammatory effect could not be correlated to the presence of galphimines.


2019 ◽  
Vol 44 (3) ◽  
pp. 239-247
Author(s):  
Mbarka Hfaiedh ◽  
Dalel Brahmi ◽  
Mohamed Nizar Zourgui ◽  
Lazhar Zourgui

Environmental and occupational exposure to chromium compounds, especially hexavalent chromium, is widely recognized as potentially nephrotoxic in humans and animals. The present study aimed to assess the efficacy of cactus (Opuntia ficus-indica) against sodium dichromate-induced nephrotoxicity, oxidative stress, and genotoxicity. Cactus cladodes extract (CCE) was phytochemically studied and tested in vitro for its potential antioxidant activities. Additionally, the preventive effect of CCE against sodium dichromate-induced renal dysfunction in a Wistar rat model (24 rats) was evaluated. For this purpose, CCE at a dose of 100 mg/kg was orally administered, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the kidneys were excised for histological, lipid peroxidation, and antioxidant enzyme analyses. The phenol, flavonoid, tannin, ascorbic acid, and carotenoid contents of CCE were considered to be important. Our analyses showed that 1 mL of CCE was equivalent to 982.5 ± 1.79 μg of gallic acid, 294.37 ± 0.84 μg of rutin, 234.78 ± 0.24 μg of catechin, 204.34 ± 1.53 μg of ascorbic acid, and 3.14 ± 0.51 μg of β-carotene. In vivo, pretreatment with CCE was found to provide significant protection against sodium dichromate-induced nephrotoxicity by inhibiting lipid peroxidation, preserving normal antioxidant activities, and protecting renal tissues from lesions and DNA damage. The nephroprotective potential of CCE against sodium dichromate toxicity might be due to its antioxidant properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


Sign in / Sign up

Export Citation Format

Share Document