scholarly journals Ulva intestinalis Extract Acts as Biostimulant and Modulates Metabolites and Hormone Balance in Basil (Ocimum basilicum L.) and Parsley (Petroselinum crispum L.)

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1391
Author(s):  
Roberta Paulert ◽  
Roberta Ascrizzi ◽  
Silvia Malatesta ◽  
Paolo Berni ◽  
Miguel Daniel Noseda ◽  
...  

Natural elicitors from macroalgae may affect plant secondary metabolites. Ulvan is a sulfated heteropolysaccharide extracted from green seaweed, acting as both a plant biotic protecting agent, and a plant elicitor, leading to the synthesis of signal molecules. In this work, the aqueous extract of Ulva intestinalis L., mainly composed of ulvan, was used as foliar-spraying treatment and its eliciting effect was investigated in basil (Ocimum basilicum L.) and parsley (Petroselinum crispum L.). Antioxidant metabolites (polyphenols and carotenoids), volatile compounds (both in headspace emissions and hydrodistilled essential oils), and hormones (jasmonic acid, salicylic acid, salicylic acid 2-O-β-D-glucoside, abscisic acid, and azelaic acid) were quantified. The foliar-spraying treatment with U. intestinalis extract increased salicylic acid and its β-glucoside in parsley; in basil, it induced the accumulation of jasmonic and abscisic acids, indicating the presence of a priming effect. In basil, the elicitation caused a change of the essential oil (EO) chemotype from methyl eugenol/eugenol to epi-α-cadinol and increased sesquiterpenes. In parsley EO it caused a significant accumulation of 1,3,8-p-menthatriene, responsible of the typical “parsley-like” smell. In both species, the phenylpropanoids decreased in headspace and EO compositions, while the salicylic acid concentration increased; this could indicate a primarily defensive response to U. intestinalis extract. Due to the evidenced significant biological activity, U. intestinalis extract used as an elicitor may represent a suitable tool to obtain higher amounts of metabolites for optimizing plant flavor metabolites.

2021 ◽  
Vol 281 ◽  
pp. 109964
Author(s):  
Halime Kahveci ◽  
Nilgun Bilginer ◽  
Emel Diraz-Yildirim ◽  
Muhittin Kulak ◽  
Emre Yazar ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 1782-1786 ◽  
Author(s):  
L.X. You ◽  
P. Wang

Exogenous jasmonic acid (JA) and salicylic acid (SA) can have an important effect on rice allelopathy. Currently, the role of endogenous JA and SA on rice-barnyard grass interaction is largely unknown. In this study, the levels of JA and SA in tissues and their correlation to rice allelochemicals inducing with barnyard grass are analyzed. Rice allelochemicals production was enhanced by coexistence with barnyard grass and allelochemicals of the allelopathic variety, PI312777 were generally higher than those of non-allelopathic variety, Liaojing9. Furthermore, JA contents of two rice varieties were generally greater in roots than in shoots, and differed clearly with tested times. The SA levels of PI312777 were generally higher than those of Liaojing9 in shoots but opposite trend in roots. The contents of total allelochemicals correlated positively with SA (Pearson correlation, r = 0.91, P < 0.001). These results indicate that as the phytohormones, JA and SA play a provable role in chemical communication between rice and barnyard grass and participate in rice-barnyard grass allelopathic interaction. Future studies should determine the signal molecules in root exudates of barnyard grass and their functions.


2020 ◽  
Vol 21 (3) ◽  
pp. 716 ◽  
Author(s):  
Thanh-Tam Ho ◽  
Hosakatte Niranjana Murthy ◽  
So-Young Park

Recently, plant secondary metabolites are considered as important sources of pharmaceuticals, food additives, flavours, cosmetics, and other industrial products. The accumulation of secondary metabolites in plant cell and organ cultures often occurs when cultures are subjected to varied kinds of stresses including elicitors or signal molecules. Application of exogenous jasmonic acid (JA) and methyl jasmonate (MJ) is responsible for the induction of reactive oxygen species (ROS) and subsequent defence mechanisms in cultured cells and organs. It is also responsible for the induction of signal transduction, the expression of many defence genes followed by the accumulation of secondary metabolites. In this review, the application of exogenous MJ elicitation strategies on the induction of defence mechanism and secondary metabolite accumulation in cell and organ cultures is introduced and discussed. The information presented here is useful for efficient large-scale production of plant secondary metabolites by the plant cell and organ cultures.


2016 ◽  
Vol 8 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Hamed KESHAVARZ ◽  
Seyed Ali Mohammad MODARRES SANAVY ◽  
Ramin SADEGH GHOL MOGHADAM

In this study the effect of foliar application of salicylic acid on the chlorophyll content, antioxidant enzymes activity, and the content of solute protein and proline were investigated in two canola varieties (Brassica napus L., cv ‘RGS’ and ‘Licord’) leaves during 0, 24, and 48 hours after salicylic acid treatment. The results showed that the content of total chlorophyll was decreased in ‘RGS’ cultivar during the experiment and this process was related with increasing of salicylic acid concentration. The activity of superoxide dismutase, peroxidase, and also lipid peroxidation were increased significantly after 48 hours compared with the first day. The results of catalase activity showed that, this trait was decreased 24 hours after salicylic acid treatment and this decrease was related with salicylic concentration. The content of protein in both cultivars slightly changed and plants treated with salicylic acid had more protein content, by contrast proline was greatly affected by salicylic acid treatment and its content was the highest 24 hours after treatment. According to the present findings the application of salicylic acid has useful effects on the biochemical traits of Brassica napus cultivars. Therefore it may be effective for the improvement of plant growth in cold regions.


2019 ◽  
Vol 109 (7) ◽  
pp. 1102-1114 ◽  
Author(s):  
Qiuying Wang ◽  
Xiuling Chen ◽  
Xinfeng Chai ◽  
Dongqi Xue ◽  
Wei Zheng ◽  
...  

Tomato gray mold disease caused by Botrytis cinerea is a serious disease that threatens tomato production around the world. Clonostachys rosea has been used successfully as a biocontrol agent against divergent plant pathogens, including B. cinerea. To understand the signal transduction pathway of C. rosea-induced resistance to tomato gray mold disease, the effects of C. rosea on gray mold tomato leaves along with changes in the activities of three defense enzymes (phenylalanine ammonialyase [PAL], polyphenol oxidase [PPO], and catalase [CAT]), second messengers (nitric oxide [NO], hydrogen peroxide [H2O2], and superoxide anion radical [O2−]), and stress-related genes (mitogen-activated protein kinase [MAPK], WRKY, Lexyl2, and atpA) in four different hormone-deficient (jasmonic acid [JA], ethylene [ET], salicylic acid [SA], and gibberellin) tomato mutants were investigated. The results revealed that C. rosea significantly inhibited the growth of mycelia and spore germination of B. cinerea. Furthermore, it reduced the incidence of gray mold disease, induced higher levels of PAL and PPO, and induced lower levels of CAT activities in tomato leaves. Moreover, it also increased NO, H2O2, and O2− levels and the gene expression levels of WRKY, MAPK, atpA, and Lexyl2. The incidence of gray mold disease in four hormone-deficient mutants was higher than that in the corresponding wild-type tomato plants. Among all of these hormone-deficient tomato mutants, JA had the most significant effect in regulating the different signal molecules. Additional study suggested that JA upregulated the expression of Lexyl2, MAPK, and WRKY but downregulated atpA. Furthermore, JA also enhanced the activity of PAL, PPO, and CAT and the production of NO and H2O2. SA downregulated CAT and PAL, whereas ET upregulated PAL but downregulated CAT. This study is of significance in understanding the regulatory pathways and biocontrol mechanism of C. rosea against B. cinerea.


2012 ◽  
Vol 78 (10) ◽  
pp. 3560-3570 ◽  
Author(s):  
Thi Thanh My Pham ◽  
Youbin Tu ◽  
Michel Sylvestre

ABSTRACTMany investigations have provided evidence that plant secondary metabolites, especially flavonoids, may serve as signal molecules to trigger the abilities of bacteria to degrade chlorobiphenyls in soil. However, the bases for this interaction are largely unknown. In this work, we found that BphAEB356, the biphenyl/chlorobiphenyl dioxygenase fromPandoraea pnomenusaB356, is significantly better fitted to metabolize flavone, isoflavone, and flavanone than BphAELB400fromBurkholderia xenovoransLB400. Unlike those of BphAELB400, the kinetic parameters of BphAEB356toward these flavonoids were in the same range as for biphenyl. In addition, remarkably, the biphenyl catabolic pathway of strain B356 was strongly induced by isoflavone, whereas none of the three flavonoids induced the catabolic pathway of strain LB400. Docking experiments that replaced biphenyl in the biphenyl-bound form of the enzymes with flavone, isoflavone, or flavanone showed that the superior ability of BphAEB356over BphAELB400is principally attributable to the replacement of Phe336 of BphAELB400by Ile334 and of Thr335 of BphAELB400by Gly333 of BphAEB356. However, biochemical and structural comparison of BphAEB356with BphAEp4, a mutant of BphAELB400which was obtained in a previous work by the double substitution Phe336Met Thr335Ala of BphAELB400, provided evidence that other residues or structural features of BphAEB356whose precise identification the docking experiment did not allow are also responsible for the superior catalytic abilities of BphAEB356. Together, these data provide supporting evidence that the biphenyl catabolic pathways have evolved divergently among proteobacteria, where some of them may serve ecological functions related to the metabolism of plant secondary metabolites in soil.


2021 ◽  
Vol 42 (5) ◽  
pp. 2751-2768
Author(s):  
Luana Lucas de Sá Almeida Veloso ◽  
◽  
Geovani Soares de Lima ◽  
André Alisson Rodrigues da Silva ◽  
Leandro de Pádua Souza ◽  
...  

The use of saline water for irrigation in semi-arid regions has become a reality due to the water scarcity that occurs in most of the year. In this scenario, exogenous application of salicylic acid may be a strategy to mitigate the deleterious effects of salt stress on plants and ensure the production of socioeconomically important crops in the semiarid region of Northeast Brazil, such as bell pepper. Thus, this study examines the osmoprotective effect of salicylic acid on gas exchanges, chloroplast pigments and production components of ‘All Big’ bell pepper plants irrigated with water with different saline levels. The experiment was carried out in greenhouse conditions in Campina Grande - PB, Brazil. Treatments consisted of four levels of electrical conductivity on the irrigation water (0.8, 1.6, 2.4 and 3.2 dS m-1) and four concentrations of salicylic acid (0, 1.2, 2.4 and 3.6 mM), which were distributed in a 4 × 4 factorial arrangement in a randomized block design with three replicates. Increases in irrigation water salinity from 0.8 dS m-1 resulted in changes in gas exchange and total chlorophyll levels of ‘All Big’ bell pepper plants. The estimated salicylic acid concentration of 1.7 mM reduced the effects of salinity on stomatal conductance, transpiration, CO2 assimilation rate, instantaneous carboxylation efficiency, total chlorophyll and fruit diameters. Irrigation with water of 1.8, 0.8 and 1.6 dS m-1 salinity associated with the estimated salicylic acid concentration of 1.6 mM increased the biosynthesis of chlorophylls a and b and the number of fruits, respectively, in bell pepper plants.


Sign in / Sign up

Export Citation Format

Share Document