scholarly journals Occurrence of Nine Pyrrolizidine Alkaloids in Senecio vulgaris L. Depending on Developmental Stage and Season

Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 54 ◽  
Author(s):  
Jens Flade ◽  
Heidrun Beschow ◽  
Monika Wensch-Dorendorf ◽  
Andreas Plescher ◽  
Wim Wätjen

The contamination of phytopharmaceuticals and herbal teas with toxic plants is an increasing problem. Senecio vulgaris L. is a particularly noxious weed in agricultural and horticultural crops due to its content of toxic pyrrolizidine alkaloids (PAs). Since some of these compounds are carcinogenic, the distribution of this plant should be monitored. The amount of PAs in S. vulgaris is affected by various factors. Therefore, we investigated the occurrence of PAs depending on the developmental stage and season. A systematic study using field-plot experiments (four seasons, five developmental stages of the plants: S1 to S5) was performed and the PA concentration was determined via LC-MS/MS analysis. The total amount of PAs in the plant increased with the plant development, however, the total PA concentrations in µg/g dry matter remained nearly unchanged, whilst trends for specific PAs were observed. The concentrations of PA-N-oxides (PANOs) were much higher than that of tertiary PAs. Maximal amounts of the PA total were 54.16 ± 4.38 mg/plant (spring, S5). The total amount of PAs increased strongly until later developmental stages. Therefore, even small numbers of S. vulgaris may become sufficient for relevant contaminations set out by the maximal permitted daily intake levels recommended by the European Food Safety Authority (EFSA).

2003 ◽  
Vol 83 (3) ◽  
pp. 629-644 ◽  
Author(s):  
D. E. Robinson ◽  
J. T. O’Donovan ◽  
M. P. Sharma ◽  
D. J. Doohan ◽  
R. Figueroa

Senecio vulgaris L. is a native of Eurasia, and has been introduced to and become naturalized in North America, South America, Africa and Australia. In Canada, it is found in all provinces and the Northwest and Yukon Territo ries. High fecundity, rapid wind dispersal, continuous germination under a wide range of growing conditions, rapid growth rate, ability to set seed a number of times per growing season and lack of chemical control options has made this species an importan t weed of some horticultural crops. This species produces pyrrolizidine alkaloids that have been implicated as a cause of liver toxicity in livestock. Populations of S. vulgaris have displayed resistance to Group 5, 6 and 7 herbicides (triazines, uracils, substituted ureas and nitriles) and other photosynthetic-transport-inhibiting herbicides. Triazine resistance in S. vulgaris was the first reported case of herbicide resistance worldwide. A rust pathogen, Puccinia lagenophorae Cooke, is currently being evaluated for control of S. vulgaris in Europe. Key words:


2011 ◽  
Vol 40 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Lincoln da Silva Amorim ◽  
Ciro Alexandre Alves Torres ◽  
Luiz Gustavo Bruno Siqueira ◽  
Jeferson Ferreira da Fonseca ◽  
José Domingos Guimarães ◽  
...  

The effects of feeding urea on embryo production, quality and developmental stages and follicular status at the beginning of a superovulatory treatment of Toggenburg does fed urea diet were investigated in this study. Eighteen females were randomly allocated to receive diets with: no urea (control, n=8), and 2.4% urea dietary dry matter (n=10) UDM. The embryo recovery was performed at day 7 or 8 of estrus cycle by transcervical technique and classified according to quality and developmental stage. The follicular status was determined by transrectal ultrasonography at the first day of FSH injection. The number and quality of embryos were not affected by dietary urea concentration. Embryos from does treated with 2.4% UDM were recovered at advanced stage. Urea concentration (2.4%) decreases the number of follicles with less than 5 mm diameter. This follicle class is positively correlated to the number of recovered embryos and to the number and percentage of excellent and good embryos.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hangxia Jin ◽  
Xiaomin Yu ◽  
Qinghua Yang ◽  
Xujun Fu ◽  
Fengjie Yuan

AbstractPhytic acid (PA) is a major antinutrient that cannot be digested by monogastric animals, but it can decrease the bioavailability of micronutrients (e.g., Zn and Fe). Lowering the PA content of crop seeds will lead to enhanced nutritional traits. Low-PA mutant crop lines carrying more than one mutated gene (lpa) have lower PA contents than mutants with a single lpa mutant gene. However, little is known about the link between PA pathway intermediates and downstream regulatory activities following the mutation of these genes in soybean. Consequently, we performed a comparative transcriptome analysis using an advanced generation recombinant inbred line with low PA levels [2mlpa (mips1/ipk1)] and a sibling line with homozygous non-mutant alleles and normal PA contents [2MWT (MIPS1/IPK1)]. An RNA sequencing analysis of five seed developmental stages revealed 7945 differentially expressed genes (DEGs) between the 2mlpa and 2MWT seeds. Moreover, 3316 DEGs were associated with 128 metabolic and signal transduction pathways and 4980 DEGs were annotated with 345 Gene Ontology terms related to biological processes. Genes associated with PA metabolism, photosynthesis, starch and sucrose metabolism, and defense mechanisms were among the DEGs in 2mlpa. Of these genes, 36 contributed to PA metabolism, including 22 genes possibly mediating the low-PA phenotype of 2mlpa. The expression of most of the genes associated with photosynthesis (81 of 117) was down-regulated in 2mlpa at the late seed developmental stage. In contrast, the expression of three genes involved in sucrose metabolism was up-regulated at the late seed developmental stage, which might explain the high sucrose content of 2mlpa soybeans. Furthermore, 604 genes related to defense mechanisms were differentially expressed between 2mlpa and 2MWT. In this study, we detected a low PA content as well as changes to multiple metabolites in the 2mlpa mutant. These results may help elucidate the regulation of metabolic events in 2mlpa. Many genes involved in PA metabolism may contribute to the substantial decrease in the PA content and the moderate accumulation of InsP3–InsP5 in the 2mlpa mutant. The other regulated genes related to photosynthesis, starch and sucrose metabolism, and defense mechanisms may provide additional insights into the nutritional and agronomic performance of 2mlpa seeds.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sonia Ciccazzo ◽  
Alfonso Esposito ◽  
Eleonora Rolli ◽  
Stefan Zerbe ◽  
Daniele Daffonchio ◽  
...  

The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05) on 16S rRNA gene diversity revealed significant differences (P<0.05) between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.


1985 ◽  
Vol 5 (1) ◽  
pp. 93-98
Author(s):  
C F Brunk ◽  
R K Conover

After conjugation in Tetrahymena thermophila, the old macronuclei degenerate, and new macronuclei (anlagen) develop. During anlagen development a number of DNA sequences found in the micronuclear genome (micronuclear limited sequences) are eliminated from the anlagen. A cloned copy of a repetitive micronuclear limited sequence has been used to determine the developmental stage at which micronuclear limited sequences are eliminated. DNAs from anlagen of various developmental stages were examined by Southern analysis. It was found that micronuclear limited sequences are present in 4C anlagen and essentially absent in 8C and 16C anlagen. The precipitous loss of these sequences in the 8C anlagen rules out under-replication as the mechanism for the loss and suggests that these sequences are specifically degraded early during anlagen development.


2012 ◽  
Vol 34 (4) ◽  
pp. 1235-1244 ◽  
Author(s):  
Layara Alexandre Bessa ◽  
Fabiano Guimarães Silva ◽  
Marialva Alvarenga Moreira ◽  
João Paulo Ribeiro Teodoro ◽  
Frederico Antônio Loureiro Soares

Knowledge of the mineral nutrition requirements of mangabeira (Hancornia speciosa Gomes) is relatively scarce and rudimentary because there is a lack of consistent data concerning its nutritional demands at different developmental stages. The aim of this research was to characterize the visual symptoms of macronutrient deficiencies and to evaluate the effects of these deficiencies on the growth, the production of dry matter, and the leaf content of mangabeira. To achieve this goal, a greenhouse experiment was conducted at the Goiano Federal Institute (Instituto Federal Goiano) in Rio Verde - GO, from January to June 2011 in which mangabeira plants were arranged in a random block design and grown in nutrient solutions. This experiment was replicated four times. The plants were treated with either a complete nutrient solution or a nutrient solution from which the individual macronutrient of interest (nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg), calcium (Ca), or sulfur (S) had been omitted. The omission of a macronutrient from the nutrient solution resulted in morphological alterations that were characteristic symptoms of the particular nutritional deficiency and caused decreases in growth and dry matter mass production. The accumulation of macronutrients displayed the following order in mangabeira leaves: N>K>Ca>P>S>Mg.


2003 ◽  
Vol 46 (4) ◽  
pp. 515-520 ◽  
Author(s):  
Mozart da Silva Lauxen ◽  
Eliane Kaltchuk- Santos ◽  
Ching -yeh Hu ◽  
Sidia Maria Callegari- Jacques ◽  
Maria Helena Bodanese-Zanettini

This study was carried out to establish the association between floral bud size and the corresponding microspore developmental stages for Brazilian soybean cultivars. Microspore developmental stage distributions were examined in young buds from cv Década, IAS5 and RS7. The data indicated that for a given bud-size group, the microspores of different cultivars were at different developmental stages, with cv RS7 and Década distributed at the youngest and cv IAS5 at the most advanced stages. Microspore stages distribution were also compared among the ten anthers of the same bud of the above cultivars. The ten anthers from a given bud were clearly distributed at different developmental stages. Caution should be exercised when adopting the standard anther culture practice of using the microspore stage of one anther to represent the entire bud.


2019 ◽  
pp. 115-119
Author(s):  
Tímea Rubóczki ◽  
Mária Takácsné Hájos

An increasing interest has been observed of beetroot leaf as a salad component due to recent studies focusing on their nutritional value. The randomized field experiment was carried out on lowland chernozem soil with 6 varieties, 3 replications and 2 sowing dates. Sampling was performed on 23 of August 2018 at the stage of 30 and 50 days of vegetation, where leaf (30 and 50 days) and root (50 days) were collected. Total dry matter, folic acid and nitrate content were evaluated. The results of this investigation show that higher total dry matter content was measured in the root (8.47–10.30%) compared to the leaf in both developmental stages (6.47–9.20%). Nevertheless, higher folic acid content was found in the young leaves of 30 and 50 days of development (58.77–113.86 µg 100g-1). Among the examined varieties, Bonel has presented great amount of folic acid not only in the leaves (99.35–113.61 µg 100g-1), but also in the root (89.99 µg 100g-1). Finally, lower nitrate content was found in Libero (316.16 mg kg-1) at 30 days and in Akela (340.41 mg kg-1) at 50 days of development. Thereby, fresh consumption of beetroot leaves are highly recommended.


2021 ◽  
Author(s):  
Chao Xiong ◽  
Brajesh K. Singh ◽  
Ji-Zheng He ◽  
Yan-Lai Han ◽  
Pei-Pei Li ◽  
...  

Abstract BackgroundPlants live with diverse microbial communities which profoundly affect multiple facets of host performance such as nutrition acquisition, disease suppression and productivity, but if and how host development impacts the assembly, functions and microbial interactions of crop microbiomes are poorly understood. Here we examined both bacterial and fungal communities across soils (rhizosphere and bulk soil), plant epiphytic and endophytic niches (phylloplane, rhizoplane, leaf and root endosphere), and plastic leaf of fake plant (representing environment-originating microbes) at three developmental stages of maize at two contrasting sites, and further explored the potential function of phylloplane microbiomes based on metagenomics.ResultsOur results suggested that plant developmental stage had a much stronger influence on the microbial diversity, composition and interkingdom networks in plant compartment niches than in soils, with the strongest effect in the phylloplane. Air (represented by fake plants) was an important source of phylloplane microbiomes which were co-shaped by both plant development and seasonal environmental factors. Further, we demonstrated that bacterial and fungal communities in plant compartment niches exhibited contrasting response to host developmental stages, with higher alpha diversity and stronger deterministic assembly within bacterial microbiomes at the early stage but a similar pattern within mycobiomes at the late stage. Moreover, we found that bacterial taxa played a more important role in microbial interkingdom network and crop yield prediction at the early stage, while fungal taxa did so at the late stage. Metagenomic analyses further indicated that phylloplane microbiomes possessed higher functional diversity and functional genes involved in nutrient provision and disease resistance at the early stage than the late stage. ConclusionsOur results suggest that host developmental stage profoundly influences plant microbiome assembly and functions, and the bacterial and fungal microbiomes take a differentiated ecological role at different plant development stages. This study provides empirical evidence for host exerting strong effect on plant microbiomes by deterministic selection to meet the physiological requirement of plant developmental stages. These findings have implications for the development of future tools to manipulate microbiome for sustainable increase in primary productivity.


Sign in / Sign up

Export Citation Format

Share Document