scholarly journals Impact of Nutritional Factors on the Proteome of Intestinal Escherichia coli: Induction of OxyR-Dependent Proteins AhpF and Dps by a Lactose-Rich Diet

2012 ◽  
Vol 78 (10) ◽  
pp. 3580-3591 ◽  
Author(s):  
Monique Rothe ◽  
Carl Alpert ◽  
Wolfram Engst ◽  
Stephanie Musiol ◽  
Gunnar Loh ◽  
...  

ABSTRACTTo study the impact of nutritional factors on protein expression of intestinal bacteria, gnotobiotic mice monoassociated withEscherichia coliK-12 were fed three different diets: a diet rich in starch, a diet rich in nondigestible lactose, and a diet rich in casein. Two-dimensional gel electrophoresis and electrospray-tandem mass spectrometry were used to identify differentially expressed proteins of bacteria recovered from small intestine and cecum. Oxidative stress response proteins such as AhpF, Dps, and Fur, all of which belong to the oxyR regulon, were upregulated inE. coliisolates from mice fed the lactose-rich diet. Luciferase reporter gene assays demonstrated that osmotic stress caused by carbohydrates led to the expression ofahpCFanddps, which was not observed in anE. coliΔoxyRmutant. Growth ofahpCFandoxyRdeletion mutants was strongly impaired when nondigestible sucrose was present in the medium. The wild-type phenotype could be restored by complementation of the deletions with plasmids containing the corresponding genes and promoters. The results indicate that some OxyR-dependent proteins play a major role in the adaptation ofE. colito osmotic stress. We conclude that there is an overlap of osmotic and oxidative stress responses. Mice fed the lactose-rich diet possibly had a higher intestinal osmolality, leading to the upregulation of OxyR-dependent proteins, which enable intestinalE. colito better cope with diet-induced osmotic stress.

2008 ◽  
Vol 190 (10) ◽  
pp. 3712-3720 ◽  
Author(s):  
Thusitha S. Gunasekera ◽  
Laszlo N. Csonka ◽  
Oleg Paliy

ABSTRACT Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43°C versus 30°C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43°C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K+ pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K+ is the central osmoregulatory signal in Enterobacteriaceae.


2012 ◽  
Vol 78 (8) ◽  
pp. 2914-2922 ◽  
Author(s):  
J. P. Bitoun ◽  
S. Liao ◽  
X. Yao ◽  
S.-J. Ahn ◽  
R. Isoda ◽  
...  

ABSTRACTPrevious studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation byStreptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression ofbrpAis regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In aGalleria mellonella(wax worm) model, BrpA deficiency was shown to diminish the virulence ofS. mutansOMZ175, which, unlikeS. mutansUA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain ofS. mutans.


2015 ◽  
Vol 59 (4) ◽  
pp. 1962-1968 ◽  
Author(s):  
Sun Hee Park ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
Sung-Yeon Cho ◽  
Hyo-Jin Lee ◽  
...  

ABSTRACTExtended-spectrum β-lactamase-producingEscherichia coli(ESBL-EC) is increasingly identified as a cause of acute pyelonephritis (APN) among patients without recent health care contact, i.e., community-associated APN. This case-control study compared 75 cases of community-associated ESBL-EC APN (CA-ESBL) to 225 controls of community-associated non-ESBL-EC APN (CA-non-ESBL) to identify the risk factors for ESBL-EC acquisition and investigate the impact of ESBL on the treatment outcomes of community-associated APN (CA-APN) caused byE. coliat a Korean hospital during 2007 to 2013. The baseline characteristics were similar between the cases and controls; the risk factors for ESBL-EC were age (>55 years), antibiotic use within the previous year, and diabetes with recurrent APN. The severity of illness did not differ between CA-ESBL and CA-non-ESBL (Acute Physiology and Chronic Health Evaluation [APACHE] II scores [mean ± standard deviation], 7.7 ± 5.9 versus 6.4 ± 5.3;P= 0.071). The proportions of clinical (odds ratio [OR], 1.76; 95% confidence interval [CI], 0.57 to 5.38;P= 0.323) and microbiological (OR, 1.16; 95% CI, 0.51 to 2.65;P= 0.730) cures were similar, although the CA-ESBL APN patients were less likely to receive appropriate antibiotics within 48 h. A multivariable Cox proportional hazards analysis of the prognostic factors for CA-APN caused byE. colishowed that ESBL production was not a significant factor for clinical (hazard ratio [HR], 0.39; 95% CI, 0.12 to 1.30;P= 0.126) or microbiological (HR, 0.49; 95% CI, 0.21 to 1.12;P= 0.091) failure. The estimates did not change after incorporating weights calculated using propensity scores for acquiring ESBL-EC. Therefore, ESBL production did not negatively affect treatment outcomes among patients with community-associatedE. coliAPN.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2012 ◽  
Vol 79 (2) ◽  
pp. 478-487 ◽  
Author(s):  
Suriana Sabri ◽  
Lars K. Nielsen ◽  
Claudia E. Vickers

ABSTRACTSucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization inEscherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes inE. coliW were examined by knockout and overexpression experiments. At low sucrose concentrations, thecscgenes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout ofcscRandcscKconferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism inE. coliW, demonstrating that no other genes can provide sucrose transport or inversion activities. However,cscKis not essential for sucrose utilization. Fructose is excreted into the medium by thecscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression ofcscA,cscAK, orcscABcould complement the WΔcscRKABknockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressingcscAB, and full growth rate complementation in WΔcscRKABalso requiredcscAB. Our understanding of sucrose utilization can be used to improveE. coliW and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


2015 ◽  
Vol 81 (10) ◽  
pp. 3561-3570 ◽  
Author(s):  
Timothy J. Johnson ◽  
Randall S. Singer ◽  
Richard E. Isaacson ◽  
Jessica L. Danzeisen ◽  
Kevin Lang ◽  
...  

ABSTRACTIncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensalEscherichia colihost. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containingE. colifrom pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containingE. coliin pig feces (P< 0.001) and increased movement of the IncA/C plasmid to other indigenousE. colihosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other thanE. coli.In vitrocompetition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage inE. coliandSalmonella.In vitrotransfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracyclinein vitrostrongly selected for IncA/C plasmid-containingE. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


2012 ◽  
Vol 57 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Migla Miskinyte ◽  
Isabel Gordo

ABSTRACTMutations causing antibiotic resistance usually incur a fitness cost in the absence of antibiotics. The magnitude of such costs is known to vary with the environment. Little is known about the fitness effects of antibiotic resistance mutations when bacteria confront the host's immune system. Here, we study the fitness effects of mutations in therpoB,rpsL, andgyrAgenes, which confer resistance to rifampin, streptomycin, and nalidixic acid, respectively. These antibiotics are frequently used in the treatment of bacterial infections. We measured two important fitness traits—growth rate and survival ability—of 12Escherichia coliK-12 strains, each carrying a single resistance mutation, in the presence of macrophages. Strikingly, we found that 67% of the mutants survived better than the susceptible bacteria in the intracellular niche of the phagocytic cells. In particular, allE. colistreptomycin-resistant mutants exhibited an intracellular advantage. On the other hand, 42% of the mutants incurred a high fitness cost when the bacteria were allowed to divide outside of macrophages. This study shows that single nonsynonymous changes affecting fundamental processes in the cell can contribute to prolonged survival ofE. coliin the context of an infection.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Kelvin G. K. Goh ◽  
Danilo G. Moriel ◽  
Steven J. Hancock ◽  
Minh-Duy Phan ◽  
Mark A. Schembri

ABSTRACT Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCE Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.


2015 ◽  
Vol 197 (14) ◽  
pp. 2316-2324 ◽  
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Yoshinori Akiyama

ABSTRACTσE, an alternative σ factor that governs a major signaling pathway in envelope stress responses in Gram-negative bacteria, is essential for growth ofEscherichia colinot only under stressful conditions, such as elevated temperature, but also under normal laboratory conditions. A mutational inactivation of thehicBgene has been reported to suppress the lethality caused by the loss of σE.hicBencodes the antitoxin of the HicA-HicB toxin-antitoxin (TA) system; overexpression of the HicA toxin, which exhibits mRNA interferase activity, causes cleavage of mRNAs and an arrest of cell growth, while simultaneous expression of HicB neutralizes the toxic effects of overproduced HicA. To date, however, how the loss of HicB rescues the cell lethality in the absence of σEand, more specifically, whether HicA is involved in this process remain unknown. Here we showed that simultaneous disruption ofhicAabolished suppression of the σEessentiality in the absence ofhicB, while ectopic expression of wild-type HicA, but not that of its mutant forms without mRNA interferase activity, restored the suppression. Furthermore, HicA and two other mRNA interferase toxins, HigB and YafQ, suppressed the σEessentiality even in the presence of chromosomally encoded cognate antitoxins when these toxins were overexpressed individually. Interestingly, when the growth media were supplemented with low levels of antibiotics that are known to activate toxins,E. colicells with no suppressor mutations grew independently of σE. Taken together, our results indicate that the activation of TA system toxins can suppress the σEessentiality and affect the extracytoplasmic stress responses.IMPORTANCEσEis an alternative σ factor involved in extracytoplasmic stress responses. Unlike other alternative σ factors, σEis indispensable for the survival ofE. colieven under unstressed conditions, although the exact reason for its essentiality remains unknown. Toxin-antitoxin (TA) systems are widely distributed in prokaryotes and are composed of two adjacent genes, encoding a toxin that exerts harmful effects on the toxin-producing bacterium itself and an antitoxin that neutralizes the cognate toxin. Curiously, it is known that inactivation of an antitoxin rescues the σEessentiality, suggesting a connection between TA systems and σEfunction. We demonstrate here that toxin activation is necessary for this rescue and suggest the possible involvement of TA systems in extracytoplasmic stress responses.


Sign in / Sign up

Export Citation Format

Share Document