scholarly journals Insights into the SAM Synthetase Gene Family and Its Roles in Tomato Seedlings under Abiotic Stresses and Hormone Treatments

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 586 ◽  
Author(s):  
Parviz Heidari ◽  
Faezeeh Mazloomi ◽  
Thomas Nussbaumer ◽  
Gianni Barcaccia

S-Adenosyl-L-methionine (SAM) is a key enzyme involved in many important biological processes, such as ethylene and polyamine biosynthesis, transmethylation, and transsulfuration. Here, the SAM synthetase (SAMS) gene family was studied in ten different plants (Arabidopsis, tomato, eggplant, sunflower, Medicago truncatula, soybean, rice, barley, Triticum urartu and sorghum) with respect to its physical structure, physicochemical characteristics, and post-transcriptional and post-translational modifications. Additionally, the expression patterns of SAMS genes in tomato were analyzed based on a real-time quantitative PCR assay and an analysis of a public expression dataset. SAMS genes of monocots were more conserved according to the results of a phylogenetic analysis and the prediction of phosphorylation and glycosylation patterns. SAMS genes showed differential expression in response to abiotic stresses and exogenous hormone treatments. Solyc01g101060 was especially expressed in fruit and root tissues, while Solyc09g008280 was expressed in leaves. Additionally, our results revealed that exogenous BR and ABA treatments strongly reduced the expression of tomato SAMS genes. Our research provides new insights and clues about the role of SAMS genes. In particular, these results can inform future functional analyses aimed at revealing the molecular mechanisms underlying the functions of SAMS genes in plants.

2021 ◽  
Vol 22 (22) ◽  
pp. 12515
Author(s):  
Yisheng Fang ◽  
Dong Cao ◽  
Hongli Yang ◽  
Wei Guo ◽  
Wenqi Ouyang ◽  
...  

The LOR (LURP-one related) family genes encode proteins containing a conserved LOR domain. Several members of the LOR family genes are required for defense against Hyaloperonospora parasitica (Hpa) in Arabidopsis. However, there are few reports of LOR genes in response to abiotic stresses in plants. In this study, a genome-wide survey and expression levels in response to abiotic stresses of 36 LOR genes from Glycine max were conducted. The results indicated that the GmLOR gene family was divided into eight subgroups, distributed on 14 chromosomes. A majority of members contained three extremely conservative motifs. There were four pairs of tandem duplicated GmLORs and nineteen pairs of segmental duplicated genes identified, which led to the expansion of the number of GmLOR genes. The expansion patterns of the GmLOR family were mainly segmental duplication. A heatmap of soybean LOR family genes showed that 36 GmLOR genes exhibited various expression patterns in different tissues. The cis-acting elements in promoter regions of GmLORs include abiotic stress-responsive elements, such as dehydration-responsive elements and drought-inducible elements. Real-time quantitative PCR was used to detect the expression level of GmLOR genes, and most of them were expressed in the leaf or root except that GmLOR6 was induced by osmotic and salt stresses. Moreover, GmLOR4/10/14/19 were significantly upregulated after PEG and salt treatments, indicating important roles in the improvement of plant tolerance to abiotic stress. Overall, our study provides a foundation for future investigations of GmLOR gene functions in soybean.


2019 ◽  
Vol 20 (19) ◽  
pp. 4736 ◽  
Author(s):  
Arpana Katiyar ◽  
Yashwanti Mudgil

Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level and in response to metal ions like nickel and cobalt, which indicates the involvement of the gene family during stress responses. Arabidopsis NDL gene family contains three homologs NDL1, NDL2 and NDL3 which share up to 75% identity at protein level. Previous studies on NDL proteins involved detailed characterization of the role of NDL1; roles of other two members were also established in root and shoot development using miRNA knockdown approach. Role of entire family in development has been established but specific functions of NDL2 and NDL3 if any are still unknown. Our in-silico analysis of NDLs promoters reveled that all three members share some common and some specific transcription factors (TFs) binding sites, hinting towards their common as well as specific functions. Based on promoter elements characteristics, present study was designed to carry out comparative analysis of the Arabidopsis NDL family during different stages of plant development, under various abiotic stresses and plant hormonal responses, in order to find out their specific and combined roles in plant growth and development. Developmental analysis using GUS fusion revealed specific localization/expression during different stages of development for all three family members. Stress analysis after treatment with various hormonal and abiotic stresses showed stress and tissue-specific differential expression patterns for all three NDL members. All three NDL members were collectively showed role in dehydration stress along with specific responses to various treatments. Their specific expression patterns were affected by presence of interacting partner the Arabidopsis heterotrimeric G-protein β subunit 1 (AGB1). The present study will improve our understanding of the possible molecular mechanisms of action of the independent NDL–AGB1 modules during stress and hormonal responses. These findings also suggest potential use of this knowledge for crop improvement.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 315
Author(s):  
Hanzeng Wang ◽  
Xue Leng ◽  
Xuemei Xu ◽  
Chenghao Li

The TIFY gene family is specific to land plants, exerting immense influence on plant growth and development as well as responses to biotic and abiotic stresses. Here, we identify 25 TIFY genes in the poplar (Populus trichocarpa) genome. Phylogenetic tree analysis revealed these PtrTIFY genes were divided into four subfamilies within two groups. Promoter cis-element analysis indicated most PtrTIFY genes possess stress- and phytohormone-related cis-elements. Quantitative real-time reverse transcription polymerase chain reaction (qRT–PCR) analysis showed that PtrTIFY genes displayed different expression patterns in roots under abscisic acid, methyl jasmonate, and salicylic acid treatments, and drought, heat, and cold stresses. The protein interaction network indicated that members of the PtrTIFY family may interact with COI1, MYC2/3, and NINJA. Our results provide important information and new insights into the evolution and functions of TIFY genes in P. trichocarpa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Zhao ◽  
Yonghui Liu ◽  
Lin Li ◽  
Haijun Meng ◽  
Ying Yang ◽  
...  

Basic helix-loop-helix (bHLH) proteins are transcription factors (TFs) that have been shown to regulate anthocyanin biosynthesis in many plant species. However, the bHLH gene family in walnut (Juglans regia L.) has not yet been reported. In this study, 102 bHLH genes were identified in the walnut genome and were classified into 15 subfamilies according to sequence similarity and phylogenetic relationships. The gene structure, conserved domains, and chromosome location of the genes were analyzed by bioinformatic methods. Gene duplication analyses revealed that 42 JrbHLHs were involved in the expansion of the walnut bHLH gene family. We also characterized cis-regulatory elements of these genes and performed Gene Ontology enrichment analysis of gene functions, and examined protein-protein interactions. Four candidate genes (JrEGL1a, JrEGL1b, JrbHLHA1, and JrbHLHA2) were found to have high homology to genes encoding bHLH TFs involved in anthocyanin biosynthesis in other plants. RNA sequencing revealed tissue- and developmental stage-specific expression profiles and distinct expression patterns of JrbHLHs according to phenotype (red vs. green leaves) and developmental stage in red walnut hybrid progeny, which were confirmed by quantitative real-time PCR analysis. All four of the candidate JrbHLH proteins localized to the nucleus, consistent with a TF function. These results provide a basis for the functional characterization of bHLH genes and investigations on the molecular mechanisms of anthocyanin biosynthesis in red walnut.


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


2020 ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

Abstract Background: Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice.Results: In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. In addition, physical and chemical properties of the encoded proteins, subcellular localization, chromosome localization, stress-related cis-elements in abiotic stresses were determined, and a phylogenetic analysis and conserved motif analysis were performed. The rice MATE family can be divided into four subfamilies. It is speculated that members of the rice MATE family have many potential functions, such as the transport and accumulation of flavonoids and alkaloids, the extrusion of plant or exogenous compounds, the regulation of disease resistance and the response to abiotic stress, based on the proteins and cis-acting elements with known functions in the same subfamily. Analysis of gene expression showed that most of the genes were constitutively expressed. Furthermore, eight MATE genes were chosen for qRT-PCR-based analysis and showed differential expression patterns in response to salt and drought stress. Conclusions: Phylogenetic analysis, element prediction, expression data and homology with other species provided strong evidence for functional homology of MATE gene in rice. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1452
Author(s):  
Hui Huang ◽  
Hui Wang ◽  
Yan Tong ◽  
Yuhua Wang

Dendrobium catenatum is a member of epiphytic orchids with extensive range of pharmacological properties and ornamental values. Superoxide dismutase (SOD), a key member of antioxidant system, plays a vital role in protecting plants against oxidative damage caused by various biotic and abiotic stresses. So far, little is known about the SOD gene family in D. catenatum. In this study, eight SOD genes, including four Cu/ZnSODs, three FeSODs and one MnSOD, were identified in D. catenatum genome. Phylogenetic analyses of SOD proteins in D. catenatum and several other species revealed that these SOD proteins can be assigned to three subfamilies based on their metal co-factors. Moreover, the similarities in conserved motifs and gene structures in the same subfamily corroborated their classification and inferred evolutionary relationships. There were many hormone and stress response elements in DcaSODs, of which light responsiveness elements was the largest group. All DcaSODs displayed tissue-specific expression patterns and exhibited abundant expression levels in flower and leaf. According to public RNA-seq data and qRT-PCR analysis showed that the almost DcaSODs, except for DcaFSD2, were highly expressed under cold and drought treatments. Under heat, light, and salt stresses, DcaCSD1, DcaCSD2, DcaCSD3 were always significantly up-regulated, which may play a vital role in coping with various stresses. The expression levels of DcaFSD1 and DcaFSD2 were promoted by high light, suggesting their important roles in light response. These findings provided valuable information for further research on DcaSODs in D. catenatum.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1855
Author(s):  
Dan Luo ◽  
Ziqi Jia ◽  
Yong Cheng ◽  
Xiling Zou ◽  
Yan Lv

The β-amylase (BAM) gene family, known for their property of catalytic ability to hydrolyze starch to maltose units, has been recognized to play critical roles in metabolism and gene regulation. To date, BAM genes have not been characterized in oil crops. In this study, the genome-wide survey revealed the identification of 30 BnaBAM genes in Brassica napus L. (B. napus L.), 11 BraBAM genes in Brassica rapa L. (B. rapa L.), and 20 BoBAM genes in Brassica oleracea L. (B. oleracea L.), which were divided into four subfamilies according to the sequence similarity and phylogenetic relationships. All the BAM genes identified in the allotetraploid genome of B. napus, as well as two parental-related species (B. rapa and B. oleracea), were analyzed for the gene structures, chromosomal distribution and collinearity. The sequence alignment of the core glucosyl-hydrolase domains was further applied, demonstrating six candidate β-amylase (BnaBAM1, BnaBAM3.1-3.4 and BnaBAM5) and 25 β-amylase-like proteins. The current results also showed that 30 BnaBAMs, 11 BraBAMs and 17 BoBAMs exhibited uneven distribution on chromosomes of Brassica L. crops. The similar structural compositions of BAM genes in the same subfamily suggested that they were relatively conserved. Abiotic stresses pose one of the significant constraints to plant growth and productivity worldwide. Thus, the responsiveness of BnaBAM genes under abiotic stresses was analyzed in B. napus. The expression patterns revealed a stress-responsive behaviour of all members, of which BnaBAM3s were more prominent. These differential expression patterns suggested an intricate regulation of BnaBAMs elicited by environmental stimuli. Altogether, the present study provides first insights into the BAM gene family of Brassica crops, which lays the foundation for investigating the roles of stress-responsive BnaBAM candidates in B. napus.


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document