scholarly journals Performance Analysis of Colored PLA Products with a Fused Filament Fabrication Process

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1984 ◽  
Author(s):  
Roberto Spina

The objective of the present work is to study the influence of color additives used for the polylactic acid (PLA) filament on the final quality of fused filament fabrication (FFF) parts. The main processing parameters of FFF parts were evaluated, identifying the significant correlations between PLA properties and part performance, using a commercial FFF machine. The quality of the products was evaluated in terms of thermo-mechanical properties such as mechanical strength, principal material temperatures, and viscosity. These last properties were characterized using differential scanning calorimetry (DSC) for the thermal measurements and a rotational rheometry (RHEO) for viscosity measurements. Cylindrical specimens were then produced for the compression test. The experimental activity and related testing of products are fully described, pointing out a significant difference in performance between parts made of different colored filaments.

2012 ◽  
Vol 32 (8-9) ◽  
pp. 585-591 ◽  
Author(s):  
Arkan J. Hadi ◽  
Ghazi Faisal Najmuldeen ◽  
Iqbal Ahmed

Abstract Waste polymer reconditioning was examined by a method of dissolution/reprecipitation on low- and high-density polyethylene (PE) and polypropylene (PP). Toluene and petroleum ether, in different proportions, were used as solvents, and n-hexane was used as a non-solvent. Commercial polymer products used on an everyday basis were used with a virgin polymer, to optimize the qualities of the final product, and 98% polymer was recovered in each case. Fourier transform infrared spectroscopy (FTIR) images and tensile mechanical properties of the samples, before and after recycling, were analyzed. The potential recycling-based degradation of the polymer was further investigated by measuring the thermal properties (melting point and crystallinity) before and after recycling, using differential scanning calorimetry (DSC). High reconditioning was observed in most recycled samples, with no significant difference from the virgin materials. The studied technique seems to be viable for waste polyolefin polymer recycling.


2021 ◽  
Author(s):  
Asma Boumedine ◽  
Khaled Benfriha ◽  
Mohammad Ahmadifar ◽  
Samir Lecheb ◽  
Mohammadali SHIRINBAYAN ◽  
...  

Abstract The present study aims to assess and characterize the effect of processing parameters including infill pattern and reinforcement type on the dimensional accuracy of products manufactured by Fused Filament Fabrication (FFF) process as well as on the mechanical properties of the printed components. The reinforcements used were carbon, Kevlar and glass fibers supplied by MarkForged®; they were utilized to manufacture the PA6 matrix composite. The mechanical properties of the stated composites were compared. Finally, the results obtained confirmed that the selection of the appropriate type of the reinforcements and infill patterns among the several available types during the printing process is effective in improving the mechanical properties and also in providing a better geometrical quality of the surfaces and the consequent dimensional precision improvement of the parts printed by FFF process.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


2020 ◽  
pp. 089270572097062
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
TP Singh ◽  
Ajay Batish

Fused filament fabrication (FFF) is one of the low cost additive manufacturing (AM) techniques capable of printing complex design (both with commercial and non-commercial feedstock filaments by using different processing parameters). In this paper a comprehensive review has been prepared on FFF operating capabilities from thermoplastics material’s view point. Various thermoplastic materials and composites available commercially and prepared at laboratory scale have been categorized based upon the reported studies performed (for thermal stability, mechanical properties etc.). It was observed that the nano composite based feed stock filament (prepared at lab scale) have edge over the micro-composites from thermo-mechanical properties view point. Further it has been noticed that the 3D printing is in changing phase and moving towards 4D printing of smart composites and designs. But hitherto little has been reported on printing of smart material with FFF platform. Further studies may be focused on printing of smart materials (both micro and nano composites) with FFF, as the low cost 3D printing solution in different engineering applications.


2018 ◽  
Vol 89 (9) ◽  
pp. 1770-1781 ◽  
Author(s):  
Huaizhong Xu ◽  
Benedict Bauer ◽  
Masaki Yamamoto ◽  
Hideki Yamane

A facile route was proposed to fabricate core–sheath microfibers, and the relationships among processing parameters, crystalline structures and the mechanical properties were investigated. The compression molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)/poly(L-lactic acid) (PLLA) strip enhanced the spinnability of PHBH and the mechanical properties of PLLA as well. The core–sheath ratio of the fibers was determined by the prefab strip, while the PLLA sheath component did not completely cover the PHBH core component due to the weak interfacial tension between the melts of PHBH and PLLA. A rotational target was applied to collect aligned fibers, which were further drawn in a water bath. The tensile strength and the modulus of as-spun and drawn fibers increased with increasing the take-up velocities. When the take-up velocity was above 500 m/min, the jet became unstable and started to break up at the tip of the Taylor cone, decreasing the mechanical properties of the fibers. The drawing process facilitated the crystallization of PLLA and PHBH, and the tensile strength and the modulus increased linearly with the increasing the draw ratio. The crystal information displayed from wide-angle X-ray diffraction patterns and differential scanning calorimetry heating curves supported the results of the tensile tests.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1101 ◽  
Author(s):  
Przybysz ◽  
Hejna ◽  
Haponiuk ◽  
Formela

The modification of poly(ε-caprolactone) (PCL) was successfully conducted during reactive processing in the presence of dicumyl peroxide (DCP) or di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB). The peroxide initiators were applied in the various amounts of 0.5 or 1.0 pbw (part by weight) into the PCL matrix. The effects of the initiator type and its concentration on the structure and mechanical and thermal properties of PCL were investigated. To achieve a detailed and proper explication of this phenomenon, the decomposition and melting temperatures of DCP and BIB initiators were measured by differential scanning calorimetry. The conjecture of the branching or cross-linking of PCL structure via used peroxides was studied by gel fraction content measurement. Modification in the presence of BIB in PCL was found to effectively increase gel fraction. The result showed that the cross-linking of PCL started at a low content of BIB, while PCL modified by high DCP content was only partially cross-linked or branched. PCL branching and cross-linking were found to have a significant impact on the mechanical properties of PCL. However, the effect of used initiators on poly(ε-caprolactone) properties strongly depended on their structure and content. The obtained results indicated that, for the modification towards cross-linking/branching of PCL structure by using organic peroxides, the best mechanical properties were achieved for PCL modified by 0.5 pbw BIB or 1.0 pbw DCP, while the PCL modified by 1.0 pbw BIB possessed poor mechanical properties, as it was related to over cross-linking.


1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Newton Luiz Dias Filho ◽  
Hermes Adolfo de Aquino

AbstractNon-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.13,9.15,15 .17,13] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (ε”) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.


Sign in / Sign up

Export Citation Format

Share Document