scholarly journals Effective Cleaving Parameters for Multimode Gradient Index CYTOP Polymer Fiber

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2491
Author(s):  
Ivan Chapalo ◽  
Antreas Theodosiou ◽  
Georgii Pobegalov ◽  
Sergei Chapalo ◽  
Kyriacos Kalli ◽  
...  

We experimentally address simple, low-cost and effective methods for the cleaving of multimode CYTOP optical fibers using razor blades. The quality of fiber end-face preparation depends on various parameters. The necessity of the near-field intensity pattern inspection for adequate evaluation of cleaved fiber end-faces is demonstrated. Razor blades of different manufacturers are evaluated for manual cleaving, as well as automated cleaving with controlled speed and temperature. The cleaving technique with both slowed motion of the razor blade and increased temperature up to 90 °C demonstrated the best quality of fiber end-faces. Typical cleaving defects are highlighted, whereas the cleave quality was characterized in terms of the light intensity profile emitted by the fiber in near field.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 937
Author(s):  
Jiaxin Ji ◽  
Pengfei Xu ◽  
Zhongwen Lin ◽  
Jiying Chen ◽  
Jing Li ◽  
...  

The near-field photolithography system has attracted increasing attention in the micro- and nano-manufacturing field, due to the high efficiency, high resolution, and the low cost of the scheme. Nevertheless, the low quality of the nano-patterns significantly limits the industrial application of this technology. Theoretical calculations showed that the reason for the poor nano-patterns is the sharp attenuation of the surface plasmon polaritons (SPPs) in the photoresist layer. The calculation results suggest that the waveguide mode, which is composed of the chromium-equivalent dielectric layer-aluminum, can facilitate the energy flux density distribution in the photoresist layer, resulting in the enhancement of the field intensity of SPPs in the photoresist layer. This reduces the linewidth of nano-patterns, while it enhances the pattern steepness. Eventually, the focusing energy of the photoresist layer can be improved. The finite-difference time-domain method was employed to simulate and verify the theoretical results. It is found that for the rotational near-field photolithography with 355 nm laser illumination, the linewidths of the nano-patterns with and without the aluminum reflector are 17.54 nm and 65.51 nm, respectively. The robustness of the experimental results implies that the application of the aluminum reflector enhances the focusing effect in the photoresist, which can broaden the application of the near-field photolithography.


2005 ◽  
Vol 11 (S03) ◽  
pp. 18-21 ◽  
Author(s):  
J. Schoenmaker ◽  
M. Pojar ◽  
A. D. Barra-Barrera ◽  
A. C. Seabra ◽  
A. D. Santos

Nanoscale resolution in microscopy characterization has become crucial for state-of-the-art science and technology. We have developed a Magneto-optical Scanning Near-Field Optical Microscope (MO-SNOM), and it has demonstrated to be a powerful tool to study local magnetic properties [1,2]. One of the critical steps in producing a reliable instrument and consistent images is the fabrication of the microscope tip. This work presents concepts and results on tip processing by chemical etching on FS-SN-3224 optical fibers from 3M. The quality of the tips produced was tested on magnetic multilayers presenting exchange-bias coupling.


2013 ◽  
Vol 20 (3) ◽  
pp. 91-106 ◽  
Author(s):  
Rachel Pizarek ◽  
Valeriy Shafiro ◽  
Patricia McCarthy

Computerized auditory training (CAT) is a convenient, low-cost approach to improving communication of individuals with hearing loss or other communicative disorders. A number of CAT programs are being marketed to patients and audiologists. The present literature review is an examination of evidence for the effectiveness of CAT in improving speech perception in adults with hearing impairments. Six current CAT programs, used in 9 published studies, were reviewed. In all 9 studies, some benefit of CAT for speech perception was demonstrated. Although these results are encouraging, the overall quality of available evidence remains low, and many programs currently on the market have not yet been evaluated. Thus, caution is needed when selecting CAT programs for specific patients. It is hoped that future researchers will (a) examine a greater number of CAT programs using more rigorous experimental designs, (b) determine which program features and training regimens are most effective, and (c) indicate which patients may benefit from CAT the most.


2005 ◽  
Vol 156 (12) ◽  
pp. 481-486 ◽  
Author(s):  
Jurij Diaci ◽  
Lahorka Kozjek

The objective of our research was to examine the effect of canopy shading on beech sapling architecture in the oldgrowth silver fir-beech forests of Pecka and Rajhenavski Rog. In August 2003 we sampled one plot (352 m2) in a large gap in Pecka, which was a result of a strong windstorm in 1983, and eight small gaps (26–78 m2) with similar sapling heights (3.8–8 m). A ground view of each gap was drawn including the characteristics of gap border trees and the density of separate sapling layers was recorded. The height and diameter were measured for each sapling, as well as the following quality characteristics on selected dominant saplings: width of the crown,number of larger branches and knots (>1/3 DBH), intensity of stem bending, deviation from vertical growth, number of terminal shoots, and the type of damage. The results show a negative effect of high canopy shading (estimated relative light intensity was below 5%) on the architectural quality of saplings. A lower overall density of saplings, greater intensity of bending and deviation from vertical growth, a shorter stem length without branches, a larger number of saplings with two terminal shoots, and a larger number of damaged saplings were observed in small gaps.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


1984 ◽  
Vol 16 (8-9) ◽  
pp. 131-138 ◽  
Author(s):  
Johannes Brummer

Problems in the construction of design storms are expressed in mathematical terms. Introduced here is a concept for approximating natural peak flow values by means of the distribution of typical rainfall patterns. A comparison demonstrates the quality of this concept and the competency of some well-known design storms for the adequate evaluation of peak flows.


2019 ◽  
Vol 16 (8) ◽  
pp. 676-682
Author(s):  
Ankusab Noorahmadsab Nadaf ◽  
Kalegowda Shivashankar

The polycyclic dihydropyridine nucleus represents the heterocyclic system of invaluable core motifs with wide applications in chemical, biological and physical properties. Although this kind of compounds have been extensively synthesized by other groups, the synthesis of these compounds under CFL light intensity were not explored. The synthesis of polycyclic dihydropyridine derivatives were achieved through the reaction of 4-hydroxycoumarin, aromatic aldehydes and ammonium acetate under CFL light irradiation conditions. A series of polycyclic dihydropyridine derivatives were prepared under CFL light irradiation conditions with high yield, short reaction time, ambient condition and without the use of catalyst. The results displayed an efficient method for the synthesis of polycyclic dihydropyridine derivatives. Clean profile, short reaction time, low cost and use of CFL light intensity instead of catalyst making it a genuinely green protocol.


2020 ◽  
Vol 6 (3) ◽  
pp. 522-525
Author(s):  
Dorina Hasselbeck ◽  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Peter P. Pott

AbstractMicroscopy enables fast and effective diagnostics. However, in resource-limited regions microscopy is not accessible to everyone. Smartphone-based low-cost microscopes could be a powerful tool for diagnostic and educational purposes. In this paper, the imaging quality of a smartphone-based microscope with four different optical parameters is presented and a systematic overview of the resulting diagnostic applications is given. With the chosen configuration, aiming for a reasonable trade-off, an average resolution of 1.23 μm and a field of view of 1.12 mm2 was achieved. This enables a wide range of diagnostic applications such as the diagnosis of Malaria and other parasitic diseases.


Sign in / Sign up

Export Citation Format

Share Document