scholarly journals An Innovative Computational Strategy to Optimize Different Furnish Compositions of Tissue Materials Using Micro/Nanofibrillated Cellulose and Biopolymer as Additives

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2397
Author(s):  
Flávia P. Morais ◽  
Ana M. M. S. Carta ◽  
Maria E. Amaral ◽  
Joana M. R. Curto

The furnish management of tissue materials is fundamental to obtain maximum quality products with a minimum cost. The key fiber properties and fiber modification process steps have a significant influence on the structural and functional properties of tissue paper. In this work, two types of additives, a commercial biopolymer additive (CBA) that replaces the traditional cationic starch and micro/nanofibrillated cellulose (CMF), were investigated. Different formulations were prepared containing eucalyptus fibers and softwood fibers treated mechanically and enzymatically and both pulps with these two additives incorporated independently and simultaneously with drainage in the tissue process range. The use of these additives to reduce the percentage of softwood fibers on tissue furnish formulations was investigated. The results indicated that a maximum of tensile strength was obtained with a combination of both additives at the expense of softness and water absorbency. With a reduction of softwood fibers, the incorporation of additives increased the tensile strength and water absorbency with a slight decrease in HF softness compared with a typical industrial furnish. Additionally, a tissue computational simulator was also used to predict the influence of these additives on the final end-use properties. Both additives proved to be a suitable alternative to reduce softwood fibers in the production of tissue products, enhancing softness, strength and absorption properties.

Cellulose ◽  
2021 ◽  
Author(s):  
Katri S. Kontturi ◽  
Koon-Yang Lee ◽  
Mitchell P. Jones ◽  
William W. Sampson ◽  
Alexander Bismarck ◽  
...  

Abstract Cellulose nanopapers provide diverse, strong and lightweight templates prepared entirely from sustainable raw materials, cellulose nanofibers (CNFs). Yet the strength of CNFs has not been fully capitalized in the resulting nanopapers and the relative influence of CNF strength, their bonding, and biological origin to nanopaper strength are unknown. Here, we show that basic principles from paper physics can be applied to CNF nanopapers to illuminate those relationships. Importantly, it appeared that ~ 200 MPa was the theoretical maximum for nanopapers with random fibril orientation. Furthermore, we demonstrate the contrast in tensile strength for nanopapers prepared from bacterial cellulose (BC) and wood-based nanofibrillated cellulose (NFC). Endemic amorphous polysaccharides (hemicelluloses) in NFC act as matrix in NFC nanopapers, strengthening the bonding between CNFs just like it improves the bonding between CNFs in the primary cell wall of plants. The conclusions apply to all composites containing non-woven fiber mats as reinforcement. Graphic abstract


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4221-4236
Author(s):  
Magdalena Kmiotek ◽  
Katarzyna Dybka-Stępień ◽  
Anna Karmazyn

Effects of cellulase enzymatic treatment followed by mechanical beating were evaluated relative to the properties of cellulase-derived tissue pulps and handsheets. When different cellulase concentrations (0.0012 FPU/g, 0.0018 FPU/g, and 0.0024 FPU/g) of oven dried pulp (a 65/35 w/w ratio of beech to eucalyptus) were used for tissue production, a slight deterioration of the morphological characteristics was observed. Thus, a possibility of controlling the changes in the degree of polymerization of cellulose, as well as the fiber properties (in particular the length and coarseness) appeared. With an increased treatment time and enzyme concentration, these effects increased. The enzyme activity did not affect the apparent density of the paper, but the porosity drastically increased. The zero-span strength of the enzymatically treated pulps decreased with an increase in treatment time and amount of cellulase. However, mechanical beating improved the bonding between the cellulase fibers, which helped prevent the eventual decrease in mechanical properties of the handsheets. With the use of cellulase, the proposed moderate changes to fiber structure were achieved, giving the possibility of predicting and controlling the properties of tissue paper.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1110 ◽  
Author(s):  
Wei Li ◽  
Zhenzhen Xu ◽  
Zongqian Wang ◽  
Jian Xing

To investigate the influences of quaternization/hydroxypropylsulfonation on viscosity stability, adhesion to fibers and film properties of oxidized tapioca starch (OTS) for ameliorating its end-use ability in applications such as warp-sizing and paper-making, a series of quaternized and hydroxypropylsulfonated OTS (QHOTS) samples were synthesized by simultaneous quaternization and hydroxypropylsulfonation of OTS with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) and 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt (CHPS-Na). The QHOTS granules were characterized by Fourier transform infra-red spectroscopic and scanning electron microscope techniques. Apparent viscosity and viscosity stability were determined, and adhesion was evaluated by measuring the bonding force of starch to the fibers. Film properties were also estimated in terms of tensile strength, breaking elongation, bending endurance, degree of crystallinity, and moisture regain. It was showed that quaternization/hydroxypropylsulfonation was capable of obviously improving viscosity stability of gelatinized OTS paste, enhancing bonding forces of OTS to cotton and polylactic acid (PLA) fibers, increasing breaking elongation, bending endurance and moisture regain of film and decreasing its tensile strength and degree of crystallinity, thereby obviously stabilizing paste viscosity, improving adhesion to fibers and lessening film brittleness. Increasing the level of quaternization/hydroxypropylsulfonation favored improvement in the stability, enhancement in adhesion and decrease in brittleness. The QHOTS showed potential in the applications of cotton and PLA sizing.


2018 ◽  
Vol 5 (4) ◽  
pp. 171486 ◽  
Author(s):  
Chao Deng ◽  
Wanjun Liu ◽  
Yinjiang Zhang ◽  
Chen Huang ◽  
Yi Zhao ◽  
...  

Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.


2004 ◽  
Vol 17 (01) ◽  
pp. 35-40 ◽  
Author(s):  
G. Hosgood ◽  
S. C. Kerwin ◽  
C. S. Hedlund ◽  
J. B. Metcalf ◽  
M. N. Banwell

SummaryCranial cruciate ligament rupture is a common injury in dogs, for which a variety of surgical techniques have been described. A commonly performed surgical technique is extracapsular stabilization with a lateral fabella-tibial suture (LFS) using large diameter nylon leader line (NLL). Inherent properties of NLL such as memory, low coefficient of friction, and large diameter may compromise knot security. Fluorocarbon (polyvinylidene fluoride; PVDF) has been investigated as a biomaterial for a variety of implants and is available as a high tensile strength fluorocarbon leader line (FCL). For a given tensile strength FCL is one-half the diameter of NLL. This study evaluated the force at failure, elongation, and stiffness of FCL compared to NLL for use as a LFS. The effects of steam and ethylene oxide sterilization on FCL were also evaluated. The results of this study demonstrate similar force at failure and stiffness for FCL when compared to NLL. In addition, the use of FCL may eliminate the elongation under low load observed with NLL. The mechanical properties of FCL loops were not affected by ethylene oxide sterilization. In contrast, steam sterilization caused significant detrimental effects on the mechanical properties of FCL and is not recommended. The reduced diameter and pliable feel of FCL allow for superior handling, formation of a less bulky and potentially more secure knot, and less foreign material in the region of implantation. FCL appears to be a suitable alternative material to NLL for a lateral fabella-tibial suture.


Sign in / Sign up

Export Citation Format

Share Document