scholarly journals Structure of the Active Nanocomplex of Antiviral and Anti-Infectious Iodine-Containing Drug FS-1

2021 ◽  
Vol 3 (4) ◽  
pp. 746-812
Author(s):  
Gulnara Abd-Rashidovna Yuldasheva ◽  
Assel Kurmanaliyeva ◽  
Aleksandr Ilin

Chromatographic analysis shows that the ionic nanostructured complex of the FS-1 drug contains nanocomplexes of α-dextrin with a size of ~40–48 Å. Based on good agreement between the UV spectra of the model structures and the experimental spectrum of the FS-1 drug, the structure of the active FS-1 nanocomplex is proposed. The structure of the active centers of the drug in the dextrin ring was calculated using the quantum-chemical approach DFT/B3PW91. The active centers, i.e., a complex of molecular iodine with lithium halide (I), a binuclear complex of magnesium and lithium containing molecular iodine, triiodide (II), and triiodide (III), are located inside the dextrin helix. The polypeptide outside the dextrin helix forms a hydrogen bond with dextrin in Complex I and coordinates the molecular iodine in Complex II. It is revealed that the active centers of the FS-1drug can be segregated from the dextrin helix and form complexes with DNA nucleotide triplets. The active centers of the FS-1 drug are only segregated on specific sections of DNA. The formation of a complex between the DNA nucleotide and the active center of FS-1 is a key stage in the mechanisms of anti-HIV, anti-coronavirus (Complex I) and antibacterial action (Complex II).

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayley I. Muendlein ◽  
Wilson M. Connolly ◽  
Zoie Magri ◽  
Irina Smirnova ◽  
Vladimir Ilyukha ◽  
...  

AbstractInflammation and cell death are closely linked arms of the host immune response to infection, which when carefully balanced ensure host survival. One example of this balance is the tightly regulated transition from TNFR1-associated pro-inflammatory complex I to pro-death complex II. By contrast, here we show that a TRIF-dependent complex containing FADD, RIPK1 and caspase-8 (that we have termed the TRIFosome) mediates cell death in response to Yersinia pseudotuberculosis and LPS. Furthermore, we show that constitutive binding between ZBP1 and RIPK1 is essential for the initiation of TRIFosome interactions, caspase-8-mediated cell death and inflammasome activation, thus positioning ZBP1 as an effector of cell death in the context of bacterial blockade of pro-inflammatory signaling. Additionally, our findings offer an alternative to the TNFR1-dependent model of complex II assembly, by demonstrating pro-death complex formation reliant on TRIF signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shirley Tremel ◽  
Yohei Ohashi ◽  
Dustin R. Morado ◽  
Jessie Bertram ◽  
Olga Perisic ◽  
...  

AbstractThe lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a–GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Johannes A Pille ◽  
Michele M Salzman ◽  
Anna A Sonju ◽  
Felicia P Lotze ◽  
Josephine E Hees ◽  
...  

Introduction: In a pig model of myocardial infarction (MI), intracoronary delivered Poloxamer (P) 188 significantly reduces ischemia/reperfusion (IR) injury when given immediately upon reperfusion, with improved mitochondrial function as a predominant effect. As mitochondria are heavily damaged during IR, a direct effect of P188 on mitochondria may lead to better therapy options during reperfusion. To show not only a similar reduction of IR injury by P188 in the brain, but also a direct P188 effect on mitochondria, we established an in-vitro model of IR that consists of damaging isolated rat brain mitochondria with hydrogen peroxide (H 2 O 2 ), one component of ischemia, then applying P188, and analyzing mitochondrial function. Methods: Male Sprague-Dawley rat brains were removed, and the mitochondria isolated by differential centrifugation and Percoll gradients, then kept on ice to slow their bioenergetics prior to any experimental treatments. Mitochondria were exposed to 200 μM H 2 O 2 for 10 min at room temperature with slight agitation; controls received no H 2 O 2 . Samples were then diluted ½ with buffer ± P188 (250 μM after dilution) to simulate reperfusion and treatment, and kept at room temperature for 10 further minutes. ATP synthesis was measured in a luminometer using a luciferase enzymatic assay. Oxygen consumption was measured by closed cell respirometry with an oxygen meter. In both assays, Complex I and Complex II were examined; Complex I substrates glutamate and malate, Complex II substrate succinate plus the Complex I inhibitor rotenone. Statistics: Data are expressed as mean ± SEM. One-Way ANOVA, SNK-Test; Kruskal-Wallis-Test; α=0.05, * vs control. Results: In both Complex I and II, mitochondrial function was significantly impaired by H 2 O 2 , with ATP synthesis affected more at Complex I and oxygen consumption affected more at Complex II. Addition of P188 did not provide any significant improvement in mitochondrial function. Conclusions: Although P188 significantly reduced IR injury when given during reperfusion in a pig model of MI, it does not appear to provide direct protection to mitochondria in this in-vitro model. Whether the exposure to H 2 O 2 causes the appropriate injury for P188 to become effective remains to be elucidated.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Larisa Emelyanova ◽  
Sirisha Gudlawar ◽  
Farhan Rizvi ◽  
Ekhson Holmuhamedov ◽  
Monika Thakur ◽  
...  

Introduction: Dronedarone (DR), a new antiarrhythmic drug, was recently shown to worsen heart failure (HF) and mortality in patients with atrial fibrillation and left ventricular dysfunction. However, the mechanism underlying the adverse effect is not known. Since, myocardium depends on mitochondrial oxidative phosphorylation (OXPHOS), we hypothesized that DR impairs mitochondrial function, which could further compropmise energetic reserves predisposing to worsening of HF and death in patients with HF. Methods: Mitochondria isolated from rat heart (2 month old, SD) were treated with DR (1, 5, 10, 20, 50 μM), and the effect on oxygen consumption rate (OCR) in State 3 (St 3, ADP stimulated), State 4 (St 4o, oligomycin) and following FCCP addition were determined using Seahorse XF24 Analyzer in the presence of glutamate/malate (complex I substrates) and succinate/rotenone (complex II substrate). Results: DR dose dependently reduced St 3 respiration both in the presence of complex I (Fig). In the presence of glutamate/malate, DR inhibited OCR by 16%, 20%, 25%, 39% and 100% at 1, 5, 10, 20, 50 μM, respectively, when compared to untreated control. At 20 μM, DR uncoupled mitochondria and increased St 4o respiration. DR at 50 μM was toxic with complete inhibition of OCR and loss of membrane potential. Similar results were observed when succinate/rotenone were used to assess complex II activity. Conclusion: DR has dose-dependent inhibitory effect on mitochondrial respiration, inhibiting OXPHOS at low concentration (1-10 μM), uncoupling at higher (20 μM) and toxic effect at 50 μM. Impairment of mitochondrial energetics could explain DR results reported in HF patients in clinical trials.


2019 ◽  
Vol 20 (5) ◽  
pp. 1143 ◽  
Author(s):  
William Antholine ◽  
Jeannette Vasquez-Vivar ◽  
Brendan Quirk ◽  
Harry Whelan ◽  
Pui Wu ◽  
...  

In a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues. The EPR signal for the 2Fe2S clusters N1b in Complex I and/or S1 in Complex II and the 2Fe2S cluster in xanthine oxidoreductase in rat liver tissue do not change in intensity because these clusters are already reduced; however, the EPR signals for N2, the terminal cluster in Complex I, and N4, the cluster preceding the terminal cluster, decrease upon adding chromate. More surprising to us, the EPR signals for N3, the cluster preceding the 2Fe2S cluster in Complex I, also decrease upon adding chromate. Moreover, this method is used to obtain the concentration of the 2Fe2S clusters in white blood cells where the 2Fe2S signal is mostly oxidized before treatment with chromate and becomes reduced and EPR detectable after treatment with chromate. The increase of the g = 1.94 2Fe2S EPR signal upon the addition of chromate can thus be used to obtain the relative steady-state concentration of the 2Fe2S clusters and steady-state concentration of Complex I and/or Complex II in mitochondria.


2002 ◽  
Vol 22 (20) ◽  
pp. 7158-7167 ◽  
Author(s):  
Zhengfan Jiang ◽  
Jun Ninomiya-Tsuji ◽  
Youcun Qian ◽  
Kunihiro Matsumoto ◽  
Xiaoxia Li

ABSTRACT Interleukin-1 (IL-1) receptor-associated kinase (IRAK) plays an important role in the sequential formation and activation of IL-1-induced signaling complexes. Previous studies showed that IRAK is recruited to the IL-1-receptor complex, where it is hyperphosphorylated. We now find that the phosphorylated IRAK in turn recruits TRAF6 to the receptor complex (complex I), which differs from the previous concept that IRAK interacts with TRAF6 after it leaves the receptor. IRAK then brings TRAF6 to TAK1, TAB1, and TAB2, which are preassociated on the membrane before stimulation to form the membrane-associated complex II. The formation of complex II leads to the phosphorylation of TAK1 and TAB2 on the membrane by an unknown kinase, followed by the dissociation of TRAF6-TAK1-TAB1-TAB2 (complex III) from IRAK and consequent translocation of complex III to the cytosol. The formation of complex III and its interaction with additional cytosolic factors lead to the activation of TAK1, resulting in NF-κB and JNK activation. Phosphorylated IRAK remains on the membrane and eventually is ubiquitinated and degraded. Taken together, the new data reveal that IRAK plays a critical role in mediating the association and dissociation of IL-1-induced signaling complexes, functioning as an organizer and transporter in IL-1-dependent signaling.


2018 ◽  
Vol 115 (26) ◽  
pp. E5944-E5953 ◽  
Author(s):  
Palak Amin ◽  
Marcus Florez ◽  
Ayaz Najafov ◽  
Heling Pan ◽  
Jiefei Geng ◽  
...  

Stimulation of cells with TNFα can promote distinct cell death pathways, including RIPK1-independent apoptosis, necroptosis, and RIPK1-dependent apoptosis (RDA)—the latter of which we still know little about. Here we show that RDA involves the rapid formation of a distinct detergent-insoluble, highly ubiquitinated, and activated RIPK1 pool, termed “iuRIPK1.” iuRIPK1 forms after RIPK1 activation in TNF-receptor-associated complex I, and before cytosolic complex II formation and caspase activation. To identify regulators of iuRIPK1 formation and RIPK1 activation in RDA, we conducted a targeted siRNA screen of 1,288 genes. We found that NEK1, whose loss-of-function mutations have been identified in 3% of ALS patients, binds to activated RIPK1 and restricts RDA by negatively regulating formation of iuRIPK1, while LRRK2, a kinase implicated in Parkinson’s disease, promotes RIPK1 activation and association with complex I in RDA. Further, the E3 ligases APC11 and c-Cbl promote RDA, and c-Cbl is recruited to complex I in RDA, where it promotes prodeath K63-ubiquitination of RIPK1 to lead to iuRIPK1 formation. Finally, we show that two different modes of necroptosis induction by TNFα exist which are differentially regulated by iuRIPK1 formation. Overall, this work reveals a distinct mechanism of RIPK1 activation that mediates the signaling mechanism of RDA as well as a type of necroptosis.


2019 ◽  
Vol 127 (4) ◽  
pp. 1117-1127
Author(s):  
Jessica R. Dent ◽  
Byron Hetrick ◽  
Shahriar Tahvilian ◽  
Abha Sathe ◽  
Keenan Greyslak ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) was recently found to be localized to mitochondria in a number of tissues and cell types, where it modulates oxidative phosphorylation via interactions with the electron transport proteins, complex I and complex II. Skeletal muscle is densely populated with mitochondria although whether STAT3 contributes to skeletal muscle oxidative capacity is unknown. In the present study, we sought to elucidate the contribution of STAT3 to mitochondrial and skeletal muscle function by studying mice with muscle-specific knockout of STAT3 (mKO). First, we developed a novel flow cytometry-based approach to confirm that STAT3 is present in skeletal muscle mitochondria. However, contrary to findings in other tissue types, complex I and complex II activity and maximal mitochondrial respiratory capacity in skeletal muscle were comparable between mKO mice and floxed/wild-type littermates. Moreover, there were no genotype differences in endurance exercise performance, skeletal muscle force-generating capacity, or the adaptive response of skeletal muscle to voluntary wheel running. Collectively, although we confirm the presence of STAT3 in skeletal muscle mitochondria, our data establish that STAT3 is dispensable for mitochondrial and physiological function in skeletal muscle. NEW & NOTEWORTHY Whether signal transducer and activator of transcription 3 (STAT3) can regulate the activity of complex I and II of the electron transport chain and mitochondrial oxidative capacity in skeletal muscle, as it can in other tissues, is unknown. By using a mouse model lacking STAT3 in muscle, we demonstrate that skeletal muscle mitochondrial and physiological function, both in vivo and ex vivo, is not impacted by the loss of STAT3.


2019 ◽  
Vol 317 (2) ◽  
pp. R262-R269 ◽  
Author(s):  
Katherine E. Mathers ◽  
James F. Staples

During hibernation, small mammals, including the 13-lined ground squirrel ( Ictidomys tridecemlineatus), cycle between two distinct metabolic states: torpor, where metabolic rate is suppressed by >95% and body temperature falls to ~5°C, and interbout euthermia (IBE), where both metabolic rate and body temperature rapidly increase to euthermic levels. Suppression of whole animal metabolism during torpor is paralleled by rapid, reversible suppression of mitochondrial respiration. We hypothesized that these changes in mitochondrial metabolism are regulated by posttranslational modifications to mitochondrial proteins. Differential two-dimensional gel electrophoresis and two-dimensional blue-native PAGE revealed differences in the isoelectric point of several liver mitochondrial proteins between torpor and IBE. Quadrupole time-of-flight LC/MS and matrix-assisted laser desorption/ionization MS identified these as proteins involved in β-oxidation, the tricarboxylic acid cycle, reactive oxygen species detoxification, and the electron transport system (ETS). Immunoblots revealed that subunit 1 of ETS complex IV was acetylated during torpor but not IBE. Phosphoprotein staining revealed significantly greater phosphorylation of succinyl-CoA ligase and the flavoprotein subunit of ETS complex II in IBE than torpor. In addition, the 75-kDa subunit of ETS complex I was 1.5-fold more phosphorylated in torpor. In vitro treatment with alkaline phosphatase increased the maximal activity of complex I from liver mitochondria isolated from torpid, but not IBE, animals. By contrast, phosphatase treatment decreased complex II activity in IBE but not torpor. These findings suggest that the rapid changes in mitochondrial metabolism in hibernators are mediated by posttranslational modifications of key metabolic enzymes, perhaps by intramitochondrial kinases and deacetylases.


Sign in / Sign up

Export Citation Format

Share Document