scholarly journals Drought Stress Detection in Juvenile Oilseed Rape Using Hyperspectral Imaging with a Focus on Spectra Variability

2020 ◽  
Vol 12 (20) ◽  
pp. 3462
Author(s):  
Wiktor R. Żelazny ◽  
Jan Lukáš

Hyperspectral imaging (HSI) has been gaining recognition as a promising proximal and remote sensing technique for crop drought stress detection. A modelling approach accounting for the treatment effects on the stress indicators’ standard deviations was applied to proximal images of oilseed rape—a crop subjected to various HSI studies, with the exception of drought. The aim of the present study was to determine the spectral responses of two cultivars, ‘Cadeli’ and ‘Viking’, representing distinctive water management strategies, to three types of watering regimes. Hyperspectral data cubes were acquired at the leaf level using a 2D frame camera. The influence of the experimental factors on the extent of leaf discolorations, vegetation index values, and principal component scores was investigated using Bayesian linear models. Clear treatment effects were obtained primarily for the vegetation indexes with respect to the watering regimes. The mean values of RGI, MTCI, RNDVI, and GI responded to the difference between the well-watered and water-deprived plants. The RGI index excelled among them in terms of effect strengths, which amounted to −0.96[−2.21,0.21] and −0.71[−1.97,0.49] units for each cultivar. A consistent increase in the multiple index standard deviations, especially RGI, PSRI, TCARI, and TCARI/OSAVI, was associated with worsening of the hydric regime. These increases were captured not only for the dry treatment but also for the plants subjected to regeneration after a drought episode, particularly by PSRI (a multiplicative effect of 0.33[0.16,0.68] for ‘Cadeli’). This result suggests a higher sensitivity of the vegetation index variability measures relative to the means in the context of the oilseed rape drought stress diagnosis and justifies the application of HSI to capture these effects. RGI is an index deserving additional scrutiny in future studies, as both its mean and standard deviation were affected by the watering regimes.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4436
Author(s):  
Mohammad Al Ktash ◽  
Mona Stefanakis ◽  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Marc Brecht

A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.


2011 ◽  
Vol 204-210 ◽  
pp. 131-134 ◽  
Author(s):  
Wei Zou ◽  
Hui Fang ◽  
Yi Dan Bao ◽  
Yong He

Hyperspectral imaging (400-1000nm) and artificial neural network (ANN) techniques were investigated for the detection of nitrogen content changes of rape leaf. Measuring SPAD value of rape leaf by using SPAD (Soil and Plant Analyzer Development).A hyperspectral imaging system was established to acquire hyperspectral data. Principal component analysis(PCA) was used to obtain principal component images, as well as to select the optimal wavelength(s). ANN was applied to establish the model between the spectral reflection values and SPAD values. The prediction results were obtained for the nitrogen content of rape leaf with the correlation of prediction of R=0.9237. The results show that the hyperspectral imaging has good classification on different nitrogen content of rape leaf.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Wang Xiaoyan ◽  
Li Zhiwei ◽  
Wang Wenjun ◽  
Wang Jiawei

ABSTRACT: Chlorophyll is a major factor affecting photosynthesis; and consequently, crop growth and yield. In this study, we devised a chlorophyll-content detection model for millet leaves in different stages of growth based on hyperspectral data. The hyperspectral images of millet leaves were obtained under a wavelength range of 380-1000 nm using a hyperspectral imager. Threshold segmentation was performed with near-infrared (NIR) reflectance and normalized difference vegetation index (NDVI) to intelligently acquire the regions of interest (ROI). Furthermore, raw spectral data were preprocessed using multivariate scatter correction (MSC). A correlation coefficient-successive projections algorithm (CC-SPA) was used to extract the characteristic wavelengths, and the characteristic parameters were extracted based on the spectral and image information. A partial least squares regression (PLSR) prediction model was established based on the single characteristic parameter and multi-characteristic parameter fusion. The determination coefficient (Rv 2) and the root-mean-square error (RMSEv) of the validation set for the multi-characteristic parameter fusion model were reported to be 0.813 and 1.766, respectively, which are higher than those obtained by the single characteristic parameter model. Based on the multi-characteristic parameter fusion, an attention-convolutional neural network (attention-CNN) (Rv 2 = 0.839, RMSEv = 1.451, RPD = 2.355) was established, which is more effective than the PLSR (Rv 2 = 0.813, RMSEv = 1.766, RPD = 2.167) and least squares support vector machine (LS-SVM) models (Rv 2 = 0.806, RMSEv = 1.576, RPD = 2.061). These results indicated that the combination of hyperspectral imaging and attention-CNN is beneficial to the application of nutrient element monitoring of crops.


2019 ◽  
Vol 11 (15) ◽  
pp. 1827 ◽  
Author(s):  
Paul V. Manley ◽  
Vasit Sagan ◽  
Felix B. Fritschi ◽  
Joel G. Burken

Explosives contaminate millions of hectares from various sources (partial detonations, improper storage, and release from production and transport) that can be life-threatening, e.g., landmines and unexploded ordnance. Exposure to and uptake of explosives can also negatively impact plant health, and these factors can be can be remotely sensed. Stress induction was remotely sensed via a whole-plant hyperspectral imaging system as two genotypes of Zea mays, a drought-susceptible hybrid and a drought-tolerant hybrid, and a forage Sorghum bicolor were grown in a greenhouse with one control group, one group maintained at 60% soil field capacity, and a third exposed to 250 mg kg−1 Royal Demolition Explosive (RDX). Green-Red Vegetation Index (GRVI), Photochemical Reflectance Index (PRI), Modified Red Edge Simple Ratio (MRESR), and Vogelmann Red Edge Index 1 (VREI1) were reduced due to presence of explosives. Principal component analyses of reflectance indices separated plants exposed to RDX from control and drought plants. Reflectance of Z. mays hybrids was increased from RDX in green and red wavelengths, while reduced in near-infrared wavelengths. Drought Z. mays reflectance was lower in green, red, and NIR regions. S. bicolor grown with RDX reflected more in green, red, and NIR wavelengths. The spectra and their derivatives will be beneficial for developing explosive-specific indices to accurately identify plants in contaminated soil. This study is the first to demonstrate potential to delineate subsurface explosives over large areas using remote sensing of vegetation with aerial-based hyperspectral systems.


2019 ◽  
Vol 9 (3) ◽  
pp. 545 ◽  
Author(s):  
Yi Ma ◽  
Shenghui Fang ◽  
Yi Peng ◽  
Yan Gong ◽  
Dong Wang

The dry aboveground biomass (AGB) is an important parameter in assessing crop growth and predicting yield. This study aims to ascertain the optimal methods for the spectroscopic estimation of winter oilseed rape (WOR) biomass. The different fertilizer-N gradients WOR were planted to collect biomass data and canopy hyperspectral data in two years of field experiments. Correlation analyses and partial least squares regression (PLSR) were performed between canopy hyperspectral data and AGB, and the linear and non-linear regression models simulated the quantitative relation between the vegetation indices (VIs) and AGB at four different growth stages (seeding, bolting, flowering, and pod stage). The results indicated that VIs that were derived from canopy hyperspectral data could estimate AGB accurately: (1) At the seeding and bolting stage, the CIred edge showed excellent performance with the higher accuracy (R2 ranged from 0.60–0.95) as compared to the other six VIs (Green chlorophyll index (CIgreen), normalized difference vegetation index (NDVI), Green normalized difference vegetation index (GNDVI), ratio vegetation index (RVI), DVI, and soil adjusted vegetation index (SAVI)); (2) Correlation analyses and PLSR can effectively extract the feature wavelengths (800 nm and 1200 nm) for biomass estimation. The modified vegetation indices NDVI (800, 1200) significantly improved AGB estimation accuracy (R2 > 0.80, RMSE < 1530 kg/hm2, RPD > 2.3) without saturation phenomenon at the total for four stages, and retained good robustness and reduced the influence of flower and pod for estimating AGB; (3) it was vital to pay more attention to the near-infrared (NIR) bands that could represent WOR growth phenology, and selecting suitable VIs and modeling algorithms could also have a relatively large effect on the success of AGB estimation. The overall results indicated that WOR AGB could be reliably estimated by canopy hyperspectral data, although the plant architecture and coverage of WOR were significantly different during its entire growing period.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 837 ◽  
Author(s):  
Aswathi Soni ◽  
Mahmoud Al-Sarayreh ◽  
Marlon M. Reis ◽  
Jeremy Smith ◽  
Kris Tong ◽  
...  

The model food in this study known as mashed potato consisted of ribose (1.0%) and lysine (0.5%) to induce browning via Maillard reaction products. Mashed potato was processed by Coaxially Induced Microwave Pasteurization and Sterilization (CiMPAS) regime to generate an F0 of 6–8 min and analysis of the post-processed food was done in two ways, which included by measuring the color changes and using hyperspectral data acquisition. For visualizing the spectra of each tray in comparison with the control sample (raw mashed-potato), the mean spectrum (i.e., mean of region of interest) of each tray, as well as the control sample, was extracted and then fed to the fitted principal component analysis model and the results coincided with those post hoc analysis of the average reflectance values. Despite the presence of a visual difference in browning, the Lightness (L) values were not significantly (p < 0.05) different to detect a cold spot among a range of 12 processed samples. At the same time, hyperspectral imaging could identify the colder trays among the 12 samples from one batch of microwave sterilization.


Author(s):  
B. Abbasi ◽  
H. Arefi ◽  
B. Bigdeli

The existence of various natural objects such as grass, trees, and rivers along with artificial manmade features such as buildings and roads, make it difficult to classify ground objects. Consequently using single data or simple classification approach cannot improve classification results in object identification. Also, using of a variety of data from different sensors; increase the accuracy of spatial and spectral information. In this paper, we proposed a classification algorithm on joint use of hyperspectral and Lidar (Light Detection and Ranging) data based on dimension reduction. First, some feature extraction techniques are applied to achieve more information from Lidar and hyperspectral data. Also Principal component analysis (PCA) and Minimum Noise Fraction (MNF) have been utilized to reduce the dimension of spectral features. The number of 30 features containing the most information of the hyperspectral images is considered for both PCA and MNF. In addition, Normalized Difference Vegetation Index (NDVI) has been measured to highlight the vegetation. Furthermore, the extracted features from Lidar data calculated based on relation between every pixel of data and surrounding pixels in local neighbourhood windows. The extracted features are based on the Grey Level Co-occurrence Matrix (GLCM) matrix. In second step, classification is operated in all features which obtained by MNF, PCA, NDVI and GLCM and trained by class samples. After this step, two classification maps are obtained by SVM classifier with MNF+NDVI+GLCM features and PCA+NDVI+GLCM features, respectively. Finally, the classified images are fused together to create final classification map by decision fusion based majority voting strategy.


2012 ◽  
Vol 39 (11) ◽  
pp. 878 ◽  
Author(s):  
Christoph Römer ◽  
Mirwaes Wahabzada ◽  
Agim Ballvora ◽  
Francisco Pinto ◽  
Micol Rossini ◽  
...  

Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large, high dimensional data cubes posing a significant challenge to data analysis. Classical supervised learning algorithms often fail in applied plant sciences due to their need of labelled datasets, which are difficult to obtain. Therefore, new approaches for unsupervised learning of relevant patterns are needed. We apply for the first time a recent matrix factorisation technique, simplex volume maximisation (SiVM), to hyperspectral data. It is an unsupervised classification approach, optimised for fast computation of massive datasets. It allows calculation of how similar each spectrum is to observed typical spectra. This provides the means to express how likely it is that one plant is suffering from stress. The method was tested for drought stress, applied to potted barley plants in a controlled rain-out shelter experiment and to agricultural corn plots subjected to a two factorial field setup altering water and nutrient availability. Both experiments were conducted on the canopy level. SiVM was significantly better than using a combination of established vegetation indices. In the corn plots, SiVM clearly separated the different treatments, even though the effects on leaf and canopy traits were subtle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghazal Azarfar ◽  
Ebrahim Aboualizadeh ◽  
Simona Ratti ◽  
Camilla Olivieri ◽  
Alessandra Norici ◽  
...  

AbstractAlgae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200–950 cm$$^{-1}$$ - 1 ), lipids (1740, 2852, 2922 cm$$^{-1}$$ - 1 ), and nucleic acid (1160 and 1201 cm$$^{-1}$$ - 1 ) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.


Sign in / Sign up

Export Citation Format

Share Document