scholarly journals Generating Up-to-Date Crop Maps Optimized for Sentinel-2 Imagery in Israel

2021 ◽  
Vol 13 (17) ◽  
pp. 3488
Author(s):  
Keren Goldberg ◽  
Ittai Herrmann ◽  
Uri Hochberg ◽  
Offer Rozenstein

The overarching aim of this research was to develop a method for deriving crop maps from a time series of Sentinel-2 images between 2017 and 2018 to address global challenges in agriculture and food security. This study is the first step towards improving crop mapping based on phenological features retrieved from an object-based time series on a national scale. Five main crops in Israel were classified: wheat, barley, cotton, carrot, and chickpea. To optimize the object-based classification process, different characteristics and inputs of the mean shift segmentation algorithm were tested, including vegetation indices, three-band combinations, and high/low emphasis on the spatial and spectral characteristics. Four known vegetation indices (VIs)-based time series were tested. Additionally, we compared two widely used machine learning methods for crop classification, support vector machine (SVM) and random forest (RF), in addition to a newer classifier, extreme gradient boosting (XGBoost). Lastly, we examined two accuracy measures—overall accuracy (OA) and area under the curve (AUC)—in order to optimally estimate the accuracy in the case of imbalanced class representation. Mean shift best performed when emphasizing both the spectral and spatial characteristics while using the green, red, and near-infrared (NIR) bands as input. Both accuracy measures showed that RF and XGBoost classified different types of crops with significantly greater success than achieved by SVM. Nevertheless, AUC was better able to represent the significant differences between the classification algorithms than OA was. None of the VIs showed a significantly higher contribution to the classification. However, normalized difference infrared index (NDII) with XGBoost classifier showed the highest AUC results (88%). This study demonstrates that the short-wave infrared (SWIR) band with XGBoost improves crop type classification results. Furthermore, the study emphasizes the importance of addressing imbalanced classification datasets by using a proper accuracy measure. Since object-based classification and phenological features derived from a VI-based time series are widely used to produce crop maps, the current study is also relevant for operational agricultural management and informatics at large scales.

2020 ◽  
Vol 12 (23) ◽  
pp. 3925
Author(s):  
Ivan Pilaš ◽  
Mateo Gašparović ◽  
Alan Novkinić ◽  
Damir Klobučar

The presented study demonstrates a bi-sensor approach suitable for rapid and precise up-to-date mapping of forest canopy gaps for the larger spatial extent. The approach makes use of Unmanned Aerial Vehicle (UAV) red, green and blue (RGB) images on smaller areas for highly precise forest canopy mask creation. Sentinel-2 was used as a scaling platform for transferring information from the UAV to a wider spatial extent. Various approaches to an improvement in the predictive performance were examined: (I) the highest R2 of the single satellite index was 0.57, (II) the highest R2 using multiple features obtained from the single-date, S-2 image was 0.624, and (III) the highest R2 on the multitemporal set of S-2 images was 0.697. Satellite indices such as Atmospherically Resistant Vegetation Index (ARVI), Infrared Percentage Vegetation Index (IPVI), Normalized Difference Index (NDI45), Pigment-Specific Simple Ratio Index (PSSRa), Modified Chlorophyll Absorption Ratio Index (MCARI), Color Index (CI), Redness Index (RI), and Normalized Difference Turbidity Index (NDTI) were the dominant predictors in most of the Machine Learning (ML) algorithms. The more complex ML algorithms such as the Support Vector Machines (SVM), Random Forest (RF), Stochastic Gradient Boosting (GBM), Extreme Gradient Boosting (XGBoost), and Catboost that provided the best performance on the training set exhibited weaker generalization capabilities. Therefore, a simpler and more robust Elastic Net (ENET) algorithm was chosen for the final map creation.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 82
Author(s):  
Huaxin Liu ◽  
Qigang Jiang ◽  
Yue Ma ◽  
Qian Yang ◽  
Pengfei Shi ◽  
...  

The development of advanced and efficient methods for mapping and monitoring wetland regions is essential for wetland resources conservation, management, and sustainable development. Although remote sensing technology has been widely used for detecting wetlands information, it remains a challenge for wetlands classification due to the extremely complex spatial patterns and fuzzy boundaries. This study aims to implement a comprehensive and effective classification scheme for wetland land covers. To achieve this goal, a novel object-based multigrained cascade forest (OGCF) method with multisensor data (including Sentinel-2 and Radarsat-2 remote sensing imagery) was proposed to classify the wetlands and their adjacent land cover classes in the wetland National Natural Reserve. Moreover, a hybrid selection method (ReliefF-RF) was proposed to optimize the feature set in which the spectral and polarimetric decomposition features are contained. We obtained six spectral features from visible and shortwave infrared bands and 10 polarimetric decomposition features from the H/A/Alpha, Pauli, and Krogager decomposition methods. The experimental results showed that the OGCF method with multisource features for land cover classification in wetland regions achieved the overall accuracy and kappa coefficient of 88.20% and 0.86, respectively, which outperformed the support vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). The accuracy of the wetland classes ranged from 75.00% to 97.53%. The proposed OGCF method exhibits a good application potential for wetland land cover classification. The classification scheme in this study will make a positive contribution to wetland inventory and monitoring and be able to provide technical support for protecting and developing natural resources.


2020 ◽  
Vol 12 (5) ◽  
pp. 777 ◽  
Author(s):  
Tien Dat Pham ◽  
Nga Nhu Le ◽  
Nam Thang Ha ◽  
Luong Viet Nguyen ◽  
Junshi Xia ◽  
...  

This study investigates the effectiveness of gradient boosting decision trees techniques in estimating mangrove above-ground biomass (AGB) at the Can Gio biosphere reserve (Vietnam). For this purpose, we employed a novel gradient-boosting regression technique called the extreme gradient boosting regression (XGBR) algorithm implemented and verified a mangrove AGB model using data from a field survey of 121 sampling plots conducted during the dry season. The dataset fuses the data of the Sentinel-2 multispectral instrument (MSI) and the dual polarimetric (HH, HV) data of ALOS-2 PALSAR-2. The performance standards of the proposed model (root-mean-square error (RMSE) and coefficient of determination (R2)) were compared with those of other machine learning techniques, namely gradient boosting regression (GBR), support vector regression (SVR), Gaussian process regression (GPR), and random forests regression (RFR). The XGBR model obtained a promising result with R2 = 0.805, RMSE = 28.13 Mg ha−1, and the model yielded the highest predictive performance among the five machine learning models. In the XGBR model, the estimated mangrove AGB ranged from 11 to 293 Mg ha−1 (average = 106.93 Mg ha−1). This work demonstrates that XGBR with the combined Sentinel-2 and ALOS-2 PALSAR-2 data can accurately estimate the mangrove AGB in the Can Gio biosphere reserve. The general applicability of the XGBR model combined with multiple sourced optical and SAR data should be further tested and compared in a large-scale study of forest AGBs in different geographical and climatic ecosystems.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 815 ◽  
Author(s):  
Xiaodan Zou ◽  
Anjie Liang ◽  
Bizhi Wu ◽  
Jun Su ◽  
Renhua Zheng ◽  
...  

Obtaining accurate measurements of tree height and diameter at breast height (DBH) in forests to evaluate the growth rate of cultivars is still a significant challenge, even when using light detection and ranging (LiDAR) and three-dimensional (3-D) modeling. As an alternative, we provide a novel high-throughput strategy for predicting the biomass of forests in the field by vegetation indices. This study proposes an integrated pipeline methodology to measure the biomass of different tree cultivars in plantation forests with high crown density, which combines unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Using a planation of Cunninghamia lanceolate, which is commonly known as Chinese fir, in Fujian, China, images were collected while using a hyperspectral camera. Vegetation indices and modeling were processed in Python using decision trees, random forests, support vector machine, and eXtreme Gradient Boosting (XGBoost) third-party libraries. The tree height and DBH of 2880 samples were manually measured and clustered into three groups—“Fast”, “median”, and “normal” growth groups—and 19 vegetation indices from 12,000 pixels were abstracted as the input of features for the modeling. After modeling and cross-validation, the classifier that was generated by random forests had the best prediction accuracy when compared to other algorithms (75%). This framework can be applied to other tree species to make management and business decisions.


Author(s):  
Xiaodan Zou ◽  
Anjie Liang ◽  
Bizhi Wu ◽  
Jun Su ◽  
Renhua Zheng ◽  
...  

Accurate measurements of tree height and diameter at breast height (DBH) in forests to evaluate the growth rate of cultivars is still a significant challenge, even when using LiDAR and 3-D modeling. We propose an integrated pipeline methodology to measure the biomass of different tree cultivars in plantation forests with high crown density which that combines unmanned aerial vehicles (UAVs), hyperspectral image sensors, and data processing algorithms using machine learning. Using a planation of Cunninghamia lanceolate, commonly known as Chinese fir, in Fujian, China, images were collected using a hyperspectral camera and orthorectified in HiSpectral Stitcher. Vegetation indices and modeling were processed in Python using decision trees, random forests, support vector machine, and eXtreme Gradient Boosting (XGBoost) third-party libraries. Tree height and DBH of 2880 samples were measured manually and clustering into three groups: “fast growth,” “median,” growth and “normal” growth group, and 19 vegetation indices from 12,000 pixels were abstracted as the input of features for the modeling. After modeling and cross-validation, the classifier generated by random forests had the best prediction accuracy compare to other algorisms (75%). This framework can be applied to other tree species to make management and business decisions.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2021 ◽  
Vol 13 (8) ◽  
pp. 1595
Author(s):  
Chunhua Li ◽  
Lizhi Zhou ◽  
Wenbin Xu

Wetland vegetation aboveground biomass (AGB) directly indicates wetland ecosystem health and is critical for water purification, carbon cycle, and biodiversity conservation. Accurate AGB estimation is essential for the monitoring and supervision of ecosystems, especially in seasonal floodplain wetlands. This paper explored the capability of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modeling grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in Shengjin Lake wetland (a Ramsar site). We use five-fold cross-validation to verify the model effectiveness. The results indicated that the RF and XGBoost models had a robust and efficient performance (with root mean square error (RMSE) of 126.571 g·m−2 and R2 of 0.844 for RF, RMSE of 112.425 g·m−2 and R2 of 0.869 for XGBoost), and the XGBoost models, by contrast, performed better. Both traditional and red-edge vegetation indices (VIs) obtained satisfactory results of AGB estimation (RMSE = 127.936 g·m−2, RMSE = 125.879 g·m−2 in XGBoost models, respectively), with the red-edge VIs contributed more to the AGB models. Moreover, we selected eight gray-level co-occurrence matrix (GLCM) textures calculated by four processing window sizes using the mean value of four offsets, and further analyzed the results of three analysis sets. Textures derived from traditional and red-edge bands using a 7 × 7 window size performed better in biomass estimation. This finding suggested that textures derived from the traditional bands were as important as the red-edge bands. The introduction of textures moderately improved the accuracy of modeling AGB, whereas the use of textures alo ne was not satisfactory. This research demonstrated that using the Sentinel-2 MSI and the two ensemble algorithms is an effective method for long-term dynamic monitoring and assessment of grass AGB in seasonal floodplain wetlands, which can support sustainable management and carbon accounting of wetland ecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arturo Moncada-Torres ◽  
Marissa C. van Maaren ◽  
Mathijs P. Hendriks ◽  
Sabine Siesling ◽  
Gijs Geleijnse

AbstractCox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, several machine learning (ML) techniques have been adapted for this task. Although they have shown to yield results at least as good as classical methods, they are often disregarded because of their lack of transparency and little to no explainability, which are key for their adoption in clinical settings. In this paper, we used data from the Netherlands Cancer Registry of 36,658 non-metastatic breast cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using the $$c$$ c -index. We demonstrated that in our dataset, ML-based models can perform at least as good as the classical CPH regression ($$c$$ c -index $$\sim \,0.63$$ ∼ 0.63 ), and in the case of XGB even better ($$c$$ c -index $$\sim 0.73$$ ∼ 0.73 ). Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. We concluded that the difference in performance can be attributed to XGB’s ability to model nonlinearities and complex interactions. We also investigated the impact of specific features on the models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can generate explicit knowledge of how models make their predictions, which is crucial in increasing the trust and adoption of innovative ML techniques in oncology and healthcare overall.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


Sign in / Sign up

Export Citation Format

Share Document