scholarly journals Superpixel Segmentation Based Synthetic Classifications with Clear Boundary Information for a Legged Robot

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2808 ◽  
Author(s):  
Yaguang Zhu ◽  
Kailu Luo ◽  
Chao Ma ◽  
Qiong Liu ◽  
Bo Jin

In view of terrain classification of the autonomous multi-legged walking robots, two synthetic classification methods for terrain classification, Simple Linear Iterative Clustering based Support Vector Machine (SLIC-SVM) and Simple Linear Iterative Clustering based SegNet (SLIC-SegNet), are proposed. SLIC-SVM is proposed to solve the problem that the SVM can only output a single terrain label and fails to identify the mixed terrain. The SLIC-SegNet single-input multi-output terrain classification model is derived to improve the applicability of the terrain classifier. Since terrain classification results of high quality for legged robot use are hard to gain, the SLIC-SegNet obtains the satisfied information without too much effort. A series of experiments on regular terrain, irregular terrain and mixed terrain were conducted to present that both superpixel segmentation based synthetic classification methods can supply reliable mixed terrain classification result with clear boundary information and will put the terrain depending gait selection and path planning of the multi-legged robots into practice.

2021 ◽  
Vol 11 (10) ◽  
pp. 628
Author(s):  
Allan B. I. Bernardo ◽  
Macario O. Cordel ◽  
Rochelle Irene G. Lucas ◽  
Jude Michael M. Teves ◽  
Sashmir A. Yap ◽  
...  

Filipino students ranked last in reading proficiency among all countries/territories in the PISA 2018, with only 19% meeting the minimum (Level 2) standard. It is imperative to understand the range of factors that contribute to low reading proficiency, specifically variables that can be the target of interventions to help students with poor reading proficiency. We used machine learning approaches, specifically binary classification methods, to identify the variables that best predict low (Level 1b and lower) vs. higher (Level 1a or better) reading proficiency using the Philippine PISA data from a nationally representative sample of 15-year-old students. Several binary classification methods were applied, and the best classification model was derived using support vector machines (SVM), with 81.2% average test accuracy. The 20 variables with the highest impact in the model were identified and interpreted using a socioecological perspective of development and learning. These variables included students’ home-related resources and socioeconomic constraints, learning motivation and mindsets, classroom reading experiences with teachers, reading self-beliefs, attitudes, and experiences, and social experiences in the school environment. The results were discussed with reference to the need for a systems perspective to addresses poor proficiency, requiring interconnected interventions that go beyond students’ classroom reading.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yaping Wu ◽  
Zhe Zhao ◽  
Weiguo Wu ◽  
Yusong Lin ◽  
Meiyun Wang

Abstract Background The automatic glioma segmentation is of great significance for clinical practice. This study aims to propose an automatic method based on superpixel for glioma segmentation from the T2 weighted Magnetic Resonance Imaging. Methods The proposed method mainly includes three steps. First, we propose an adaptive superpixel generation algorithm based on simple linear iterative clustering version with 0 parameter (ASLIC0). This algorithm can acquire a superpixel image with fewer superpixels and better fit the boundary of region of interest (ROI) by automatically selecting the optimal number of superpixels. Second, we compose a training set by calculating the statistical, texture, curvature and fractal features for each superpixel. Third, Support Vector Machine (SVM) is used to train classification model based on the features of the second step. Results The experimental results on Multimodal Brain Tumor Image Segmentation Benchmark 2017 (BraTS2017) show that the proposed method has good segmentation performance. The average Dice, Hausdorff distance, sensitivity, and specificity for the segmented tumor against the ground truth are 0.8492, 3.4697 pixels, 81.47, and 99.64%, respectively. The proposed method shows good stability on high- and low-grade glioma samples. Comparative experimental results show that the proposed method has superior performance. Conclusions This provides a close match to expert delineation across all grades of glioma, leading to a fast and reproducible method of glioma segmentation.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7945
Author(s):  
Yinlong Zhu ◽  
Fujie Zhang ◽  
Lixia Li ◽  
Yuhao Lin ◽  
Zhongxiong Zhang ◽  
...  

The existing classification methods for Panax notoginseng taproots suffer from low accuracy, low efficiency, and poor stability. In this study, a classification model based on image feature fusion is established for Panax notoginseng taproots. The images of Panax notoginseng taproots collected in the experiment are preprocessed by Gaussian filtering, binarization, and morphological methods. Then, a total of 40 features are extracted, including size and shape features, HSV and RGB color features, and texture features. Through BP neural network, extreme learning machine (ELM), and support vector machine (SVM) models, the importance of color, texture, and fusion features for the classification of the main roots of Panax notoginseng is verified. Among the three models, the SVM model performs the best, achieving an accuracy of 92.037% on the prediction set. Next, iterative retaining information variables (IRIVs), variable iterative space shrinkage approach (VISSA), and stepwise regression analysis (SRA) are used to reduce the dimension of all the features. Finally, a traditional machine learning SVM model based on feature selection and a deep learning model based on semantic segmentation are established. With the model size of only 125 kb and the training time of 3.4 s, the IRIV-SVM model achieves an accuracy of 95.370% on the test set, so IRIV-SVM is selected as the main root classification model for Panax notoginseng. After being optimized by the gray wolf optimizer, the IRIV-GWO-SVM model achieves the highest classification accuracy of 98.704% on the test set. The study results of this paper provide a basis for developing online classification methods of Panax notoginseng with different grades in actual production.


Robotica ◽  
2008 ◽  
Vol 26 (6) ◽  
pp. 767-779 ◽  
Author(s):  
Ibrahim Halatci ◽  
Christopher A. Brooks ◽  
Karl Iagnemma

SUMMARYKnowledge of the physical properties of terrain surrounding a planetary exploration rover can be used to allow a rover system to fully exploit its mobility capabilities. Terrain classification methods provide semantic descriptions of the physical nature of a given terrain region. These descriptions can be associated with nominal numerical physical parameters, and/or nominal traversability estimates, to improve mobility prediction accuracy. Here we study the performance of multisensor classification methods in the context of Mars surface exploration. The performance of two classification algorithms for color, texture, and range features are presented based on maximum likelihood estimation and support vector machines. In addition, a classification method based on vibration features derived from rover wheel–terrain interaction is briefly described. Two techniques for merging the results of these “low-level” classifiers are presented that rely on Bayesian fusion and meta-classifier fusion. The performance of these algorithms is studied using images from NASA's Mars Exploration Rover mission and through experiments on a four-wheeled test-bed rover operating in Mars-analog terrain. Also a novel approach to terrain sensing based on fused tactile and visual features is presented. It is shown that accurate terrain classification can be achieved via classifier fusion from visual and tactile features.


2020 ◽  
Vol 4 (2) ◽  
pp. 329-335
Author(s):  
Rusydi Umar ◽  
Imam Riadi ◽  
Purwono

The failure of most startups in Indonesia is caused by team performance that is not solid and competent. Programmers are an integral profession in a startup team. The development of social media can be used as a strategic tool for recruiting the best programmer candidates in a company. This strategic tool is in the form of an automatic classification system of social media posting from prospective programmers. The classification results are expected to be able to predict the performance patterns of each candidate with a predicate of good or bad performance. The classification method with the best accuracy needs to be chosen in order to get an effective strategic tool so that a comparison of several methods is needed. This study compares classification methods including the Support Vector Machines (SVM) algorithm, Random Forest (RF) and Stochastic Gradient Descent (SGD). The classification results show the percentage of accuracy with k = 10 cross validation for the SVM algorithm reaches 81.3%, RF at 74.4%, and SGD at 80.1% so that the SVM method is chosen as a model of programmer performance classification on social media activities.


ROBOT ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 660 ◽  
Author(s):  
Qiang LI ◽  
Kai XUE ◽  
He XU ◽  
Wenlin PAN ◽  
Tianlong WANG

2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chun Qiu ◽  
Sai Li ◽  
Shenghui Yang ◽  
Lin Wang ◽  
Aihui Zeng ◽  
...  

Aim: To search the genes related to the mechanisms of the occurrence of glioma and to try to build a prediction model for glioblastomas. Background: The morbidity and mortality of glioblastomas are very high, which seriously endangers human health. At present, the goals of many investigations on gliomas are mainly to understand the cause and mechanism of these tumors at the molecular level and to explore clinical diagnosis and treatment methods. However, there is no effective early diagnosis method for this disease, and there are no effective prevention, diagnosis or treatment measures. Methods: First, the gene expression profiles derived from GEO were downloaded. Then, differentially expressed genes (DEGs) in the disease samples and the control samples were identified. After that, GO and KEGG enrichment analyses of DEGs were performed by DAVID. Furthermore, the correlation-based feature subset (CFS) method was applied to the selection of key DEGs. In addition, the classification model between the glioblastoma samples and the controls was built by an Support Vector Machine (SVM) based on selected key genes. Results and Discussion: Thirty-six DEGs, including 17 upregulated and 19 downregulated genes, were selected as the feature genes to build the classification model between the glioma samples and the control samples by the CFS method. The accuracy of the classification model by using a 10-fold cross-validation test and independent set test was 76.25% and 70.3%, respectively. In addition, PPP2R2B and CYBB can also be found in the top 5 hub genes screened by the protein– protein interaction (PPI) network. Conclusions: This study indicated that the CFS method is a useful tool to identify key genes in glioblastomas. In addition, we also predicted that genes such as PPP2R2B and CYBB might be potential biomarkers for the diagnosis of glioblastomas.


Sign in / Sign up

Export Citation Format

Share Document