scholarly journals Axial Compression Behaviours of Pultruded GFRP–Wood Composite Columns

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 755 ◽  
Author(s):  
Yujun Qi ◽  
Lei Xie ◽  
Yu Bai ◽  
Weiqing Liu ◽  
Hai Fang

An innovative pultruded fiber reinforced polymer (FRP)–wood composite (PFWC) column with a lightweight southern pine wood core confined by outer FRP sheets was manufactured using an improved pultrusion process. Axial compression tests with both ends pinned as boundary conditions were employed to investigate the mechanical performance of such PFWC columns under concentric load. Through experimental investigations, the effects of the slenderness ratio on the failure modes and the axial load bearing capacities of the PFWC columns were evaluated. The failure modes showed that the specimens with a slenderness ratio less than 43.2 failed through compressive failure at junctions on FRP sheets, while those with slenderness ratios larger than 57.6 showed global buckling. Strain responses on specimens with different slenderness ratios are consistent with the observed failure modes. Finite element analysis was carried out to validate the experimental results, and satisfactory agreement was found between the failure modes and load–displacement curves. An empirical equation was developed with a new factor taking 0.65 into account to predict the load bearing capacities of the PFWC columns, and good agreement was found.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5103
Author(s):  
Robel Wondimu Alemayehu ◽  
Youngsik Kim ◽  
Jaehoon Bae ◽  
Young K. Ju

Compared to concrete or mortar-filled Buckling-Restrained Braces (BRBs), all-steel BRBs provide weight and fabrication time reductions. In particular, all-steel buckling braces with H-section cores are gaining attention in cases where large axial strength is required. In this paper, an all-steel BRB, called NOVEL (Noise, CO2 emission, Vibration, Energy dissipation and Labor), is presented. It comprises an H-section core encased in a square casing, and its behavior was studied through full-scale subassembly and brace tests, followed by a finite element parametric study. Two failure modes were observed: global buckling and flange buckling of the H-section core, which occurred in test specimens with Pcr/Py ratios of 1.68 and 4.91, respectively. Global buckling occurred when the maximum moment in the casing reached its yielding moment, although the test specimens had sufficient stiffness to prevent global buckling. Failure by core flange buckling occurred at a core strain of 1.2%. The finite element parametric study indicated that adjusting the width-to-thickness ratio of the core flange is more feasible than stiffening the flange or adjusting the unconstrained-length end stiffeners. The value of 5.06 was the minimum flange slenderness ratio that provided a stable hysteresis to the end of the loading protocol of the American Institute of Steel Construction standard.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012020
Author(s):  
A W Ahmed-Abdullamohamed ◽  
M K Kamarudin ◽  
M M. Yussof

Abstract The demand for transparency has increased in the construction industry and contemporary architecture over the last decade. The prior researchers focused on glass columns because their uniqueness and transparent characteristics generate an impressive visual feature. Past studies on structural glass entailed numerous experimental investigations, but FEA was applied in a few investigation exercises. This study aims to validate the experimental data and analyse the crack in the tubular glass column and determine the effectiveness of different slenderness ratios of the glass column. This study investigated the column structural behaviour under compression with different geometrical dimensions of hollow section laminated glass columns to determine their load-carrying capacity, buckling performance, and failure mechanism. Finite element analysis using the explicit method was performed by using ABAQUS. The study found that the failure mechanisms depend on the slenderness ratio classified into two failure modes, either buckling or crushing. The glass column failed due to buckling when the slenderness ratio is more than 40, while it failed due to crushing when the slenderness ratio is less than 40. The finite element analysis did not correlate perfectly with the experimental data since the FEA underestimating the glass performance.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


1999 ◽  
Author(s):  
Brian T. Wallace ◽  
Bhavani V. Sankar ◽  
Peter G. Ifju

Abstract The present study is concerned with translaminar reinforcement in a sandwich beam for preventing buckling of a delaminated face-sheet under axial compression. Graphite/epoxy pins are used as reinforcement in the thickness direction of sandwich beams consisting of graphite/epoxy face-sheets and a Aramid honeycomb core. Compression tests are performed to understand the effects of the diameter of the reinforcing pins and reinforcement spacing on the ultimate compressive strength of the delaminated beams. A finite element analysis is performed to understand the effects of translaminar reinforcement on the critical buckling loads and post-buckling behavior of the sandwich beam under axial compression.


Author(s):  
Hua Wang ◽  
Suo Si

There are unavoidable deviations, such as shrinkage and distortions, in the composite detail parts production due to the complexity of composites fabrication. Interests in the assembly analysis of composite beams have led to a need for more accurate analysis especially in the case of fabrication deviations. This work proposes a numerical finite element model of thin-walled C-section composite beam with R-angle deviation for assembling. The rule of Hashin failure combined with cohesive element is applied to study the mechanical performance of the fiber and matrix (implemented as user subroutine UMAT in ABAQUS) while positioning and clamping. Tension and compression tests are carried out based on available standards to determine the C-section beam behavior under load. The testing data validates the proposed numerical model. The numerical model captures the experimentally obtained results with minimal error, and predicts the failure modes successfully. The proposed model allows to determine accurately the first failure location and the associated load level. It will enhance the understanding of the composite components pre-loading analysis, and help systematically improving the composites assembling efficiency in civil aircraft industry.


2014 ◽  
Vol 501-504 ◽  
pp. 1609-1614
Author(s):  
Zhong Peng ◽  
Jun Huang ◽  
Shao Bin Dai ◽  
Ji Xiong Liu

3 medium thick-walled cold-formed steel top-and-seat angle joints were designed. The ABAQUS nonlinear finite element analysis on earthquake resistance behaviors of the joints were conducted under low cyclic loading. The results indicate that the failure processes and failure modes of 3 specimens are basically the same, the destruction of joints derive from buckling deformation of the top-and-seat angle and buckling of the steel beam flanges; the shapes of hysteresis curves of all specimens are obvious pinch together and present spindle, the displacement ductility factors are greater than 5.5, the equivalent viscous damping factors are greater than 0.158, all the specimens possess good energy dissipation capacity. The secant stiffness variations are almost similar, each specimen represents significant degradation. Increase the thickness of angle and diameter of high-strength bolt can improve the mechanical performance of the joints. Increase the bolt diameter, the ductility, energy dissipation capacity and initial stiffness enhance obviously, however, there is no apparent effect while increasing the thickness of angle.


Author(s):  
Xindong Ding ◽  
Shuqing Wang ◽  
Yu Liu ◽  
Zepeng Zheng

Axial compression tests were carried out on 6 square steel tube confined concrete short columns and 6 BFRP square pipe confined concrete axial compression tests. The concrete strength grades were C30, C40, and C50. The test results show that the failure modes of steel pipe and BFRP pipe are obviously different, and the BFRP pipe undergoes brittle failure. Compared with the short columns of concrete confined by BFRP pipes, the ultimate bearing capacity of axial compression is increased by -76.46%, -76.01%, and -73.06%, and the ultimate displacements are -79.20%, -80.78%, -71.71%.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Lidan Mei ◽  
Nan Guo ◽  
Ling Li ◽  
Hongliang Zuo ◽  
Yan Zhao

AbstractTraditional glulam beam connection mode has a weak ability to transfer bending moment, leading to insufficient joint stiffness and mostly in the form of simply supported beams. To make full use of material strength, a novel prestressed glulam continuous beam was proposed. On this basis, this paper put forward a new method to further improve the mechanical performance of the beams by controlling prestress. According to the estimated ultimate loads of the beams, six different control range values were formulated, and 12 continuous beams were tested for flexural performance. The effects of prestressing control on the failure modes, ultimate load capacity, and load versus deformation relationships of the glulam continuous beams were analyzed. The test results indicated that the flexural performance of the beams with prestressed control was significantly improved compared to the uncontrolled beams, the ultimate load was enhanced by 13.60%–45.11%, and the average steel wire stress at failure was increased from 70% of the designed tensile strength to 94%. Combined with the finite element analysis (FEA), the reasonable control range of the prestressed control continuous beams was18%–30% of the estimated ultimate load. The research in this paper can provide references for the theoretical analysis and engineering application of similar structures.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Bernardo Lejano ◽  
James Matthew De Jesus ◽  
Arvin Patrick Yu

Cold-Formed Steel (CFS) is a good construction material because of its high strength-to-weight ratio, that is, it exhibits efficient load carrying capabilities in combination with its lightweight characteristics. Although CFS is already being used in construction, information on structural performance of locally-produced CFS in the Philippines is scarce. To date, the authors have not found any experimental study done in the Philippines regarding the structural performance of locally-produced CFS. In this study, C-section and Z-section are being studied since these members exhibit buckling failures that may be difficult to predict due to complexity of their section geometry. The objective of this paper is to present the performance of these CFS sections when subjected to concentric axial compression both experimentally and computationally. For the experimental part, the CFS members were subjected to axial compression using a hydraulic jack. High-speed video cameras were used to capture the different failure modes. For the computational aspect, provisions found in the National Structural Code of the Philippines (NSCP) were used to calculate the compression strength of the members. A total of 80 C-section specimens with 5 different lengths and 5 different thicknesses were tested. It was found that the strength calculations using the NSCP provisions were not consistent with the results of the compression tests. For shorter lengths, distortional buckling prevailed as the main failure, while for longer lengths, torsional-flexural buckling occurred. All of the predicted strengths were highly conservative. For the Z-section, a total of 180 specimens with 6 different lengths and 6 different thicknesses were tested. Torsional-flexural buckling was observed in majority of the specimens. Although most of the failure modes were predicted correctly, it was found that the predicted strengths using the NSCP were relatively high compared to the experimental results, thus non-conservative. Finite Element Method (FEM) analyses using ANSYS were conducted. Findings indicate that the experiment results agreed well with the FEM results.


2012 ◽  
Vol 256-259 ◽  
pp. 697-701
Author(s):  
Zhuo Han ◽  
Shao Fei Jiang ◽  
Zhi Ping Sun ◽  
Le Zhou

The objectives of this research were to investigate the structural behavior of slender steel reinforced concrete (Referred to as SRC)composite columns subjected to eccentric axial loading. The test consisted of 10 slender columns, with rectangular section160×180mm, and steel shape I10 encased in concrete. The stirrup spacing was 150 mm; its diameter was 6 mm. The diameter of longitudinal reinforcing bars was 10 mm. Details of the experimental investigations including description of the test columns, failure modes and mechanisms, strain characteristics, and load-deformation responses are discussed. Effects of concrete strength, slenderness of columns, and eccentricity of axial loads on the load-carrying capacity of slender column are then presented. Based on these results, a range of slenderness ratio and eccentric ratio of slender SRC column is proposed.


Sign in / Sign up

Export Citation Format

Share Document