scholarly journals Modular Pressure and Flow Rate-Balanced Microfluidic Serial Dilution Networks for Miniaturised Point-of-Care Diagnostic Platforms

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 911
Author(s):  
Nikolaos Vasilakis ◽  
Konstantinos Papadimitriou ◽  
Hywel Morgan ◽  
Themistoklis Prodromakis

Fast, efficient and more importantly accurate serial dilution is a necessary requirement for most biochemical microfluidic-based quantitative diagnostic applications. Over the last two decades, a multitude of microfluidic devices has been proposed, each one demonstrating either a different type of dilution technique or complex system architecture based on various flow source and valving combinations. In this work, a novel serial dilution network architecture is demonstrated, implemented on two entirely different substrates for validation and performance characterisation. The single layer, stepwise serial diluter comprises an optimised microfluidic network, where identical dilution ratios per stage are ensured, either by applying equal pressure or equal flow rates at both inlets. The advantages of this serial diluter are twofold: Firstly, it is structured as a modular unit cell, simplifying the required fluid driving mechanism to a single source for both sample and buffer solution. Thus, this unit cell can be used as a fundamental microfluidic building block, forming multistage serial dilution cascades, once combined appropriately with itself or other similar unit cells. Secondly, the serial diluter can tolerate the inevitable flow source fluctuations, ensuring constant dilution ratios without the need to employ damping mechanisms, making it ideal for Point of Care (PoC) platforms. Proof-of-concept experiments with glucose have demonstrated good agreement between simulations and measurements, highlighting the validity of our serial diluter.

2018 ◽  
Author(s):  
Nikolaos Vasilakis ◽  
Konstantinos I. Papadimitriou ◽  
Hywel Morgan ◽  
Themistoklis Prodromakis

AbstractFast, efficient and more importantly accurate serial dilution is a requirement for many chemical and biological microfluidic-based applications. Over the last decade, a large number of microfluidic devices has been proposed, each demonstrating either a different type of dilution technique or complex system architectures based on various flow source combinations. In this work, a novel serial dilution architecture is demonstrated, implemented on a commercially fabricated printed circuit board (PCB). The proposed single layer, stepwise serial diluter comprises an optimised microfluidic network, where identical dilution ratio per stage can be ensured, either by applying equal pressure or equal flow rates at both inlets. The advantages of the proposed serial diluter are twofold. Firstly, it is structured as a modular unit cell, simplifying the required fluid driving mechanism to a single source for both sample and buffer solution. Thus, this unit cell can be seen as a fundamental microfluidic building block, which can form multistage serial dilution cascades, once combined appropriately with itself or other similar unit cells. Secondly, the serial diluter has been fabricated entirely using commercial PCB technologies, allowing the device to be interfaced with standard electronic components, if more complex miniature point-of-care (PoC) systems are desired, where the small footprint and accuracy of the device is of paramount importance.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Matthew J. Russo ◽  
Mingyu Han ◽  
Pauline E. Desroches ◽  
Clayton S. Manasa ◽  
Jessair Dennaoui ◽  
...  

2020 ◽  
Author(s):  
Jiexi Yin ◽  
Qun Lou ◽  
Haiming Wang ◽  
Zhining Chen ◽  
Wei Hong

<p>A broadband dual-polarized single-layer 1-bit unit cell is proposed for achieving the independently controllable dual-beam reflectarray antenna. The unit cell independently provides two-state phase compensation for two orthogonally linearly-polarized waves. The 180-degree reflective phase difference between the two states is achieved by tuning the magnetic resonance of State 0 and the electrical resonance of State 1. With its two resonances close to each other, the unit cell has a reflective phase difference of 180±20 degrees between two states over a broad bandwidth of 27.2-51.1 GHz. The cross-polarization levels of below -30 dB ensure the high isolation between two polarizations. Using the proposed dual-polarized unit cells, a 1-bit dual-beam reflectarray antenna is designed and excited by a dual-polarized horn to show the ability of independently controlling two orthogonally linearly-polarized waves. At 33 GHz, the beams direct to -15 degrees and 20 degrees for the feeding of horizontally and vertically polarized port, respectively. The 1.5-dB gain bandwidth is greater than 20% for both polarizations. The proposed dual-polarized reflectarray antenna with independently controllable 1-bit dual beams provides an alternative design for the multiuser multiple-input multiple-output applications.</p>


2020 ◽  
Author(s):  
Jiexi Yin ◽  
Qun Lou ◽  
Haiming Wang ◽  
Zhining Chen ◽  
Wei Hong

<p>A broadband dual-polarized single-layer 1-bit unit cell is proposed for achieving the independently controllable dual-beam reflectarray antenna. The unit cell independently provides two-state phase compensation for two orthogonally linearly-polarized waves. The 180-degree reflective phase difference between the two states is achieved by tuning the magnetic resonance of State 0 and the electrical resonance of State 1. With its two resonances close to each other, the unit cell has a reflective phase difference of 180±20 degrees between two states over a broad bandwidth of 27.2-51.1 GHz. The cross-polarization levels of below -30 dB ensure the high isolation between two polarizations. Using the proposed dual-polarized unit cells, a 1-bit dual-beam reflectarray antenna is designed and excited by a dual-polarized horn to show the ability of independently controlling two orthogonally linearly-polarized waves. At 33 GHz, the beams direct to -15 degrees and 20 degrees for the feeding of horizontally and vertically polarized port, respectively. The 1.5-dB gain bandwidth is greater than 20% for both polarizations. The proposed dual-polarized reflectarray antenna with independently controllable 1-bit dual beams provides an alternative design for the multiuser multiple-input multiple-output applications.</p>


Author(s):  
L. Fei ◽  
P. Fraundorf

Interface structure is of major interest in microscopy. With high resolution transmission electron microscopes (TEMs) and scanning probe microscopes, it is possible to reveal structure of interfaces in unit cells, in some cases with atomic resolution. A. Ourmazd et al. proposed quantifying such observations by using vector pattern recognition to map chemical composition changes across the interface in TEM images with unit cell resolution. The sensitivity of the mapping process, however, is limited by the repeatability of unit cell images of perfect crystal, and hence by the amount of delocalized noise, e.g. due to ion milling or beam radiation damage. Bayesian removal of noise, based on statistical inference, can be used to reduce the amount of non-periodic noise in images after acquisition. The basic principle of Bayesian phase-model background subtraction, according to our previous study, is that the optimum (rms error minimizing strategy) Fourier phases of the noise can be obtained provided the amplitudes of the noise is given, while the noise amplitude can often be estimated from the image itself.


2019 ◽  
Vol 26 (11) ◽  
pp. 1946-1959 ◽  
Author(s):  
Le Minh Tu Phan ◽  
Lemma Teshome Tufa ◽  
Hwa-Jung Kim ◽  
Jaebeom Lee ◽  
Tae Jung Park

Background:Tuberculosis (TB), one of the leading causes of death worldwide, is difficult to diagnose based only on signs and symptoms. Methods for TB detection are continuously being researched to design novel effective clinical tools for the diagnosis of TB.Objective:This article reviews the methods to diagnose TB at the latent and active stages and to recognize prospective TB diagnostic methods based on nanomaterials.Methods:The current methods for TB diagnosis were reviewed by evaluating their advantages and disadvantages. Furthermore, the trends in TB detection using nanomaterials were discussed regarding their performance capacity for clinical diagnostic applications.Results:Current methods such as microscopy, culture, and tuberculin skin test are still being employed to diagnose TB, however, a highly sensitive point of care tool without false results is still needed. The utilization of nanomaterials to detect the specific TB biomarkers with high sensitivity and specificity can provide a possible strategy to rapidly diagnose TB. Although it is challenging for nanodiagnostic platforms to be assessed in clinical trials, active TB diagnosis using nanomaterials is highly expected to achieve clinical significance for regular application. In addition, aspects and future directions in developing the high-efficiency tools to diagnose active TB using advanced nanomaterials are expounded.Conclusion:This review suggests that nanomaterials have high potential as rapid, costeffective tools to enhance the diagnostic sensitivity and specificity for the accurate diagnosis, treatment, and prevention of TB. Hence, portable nanobiosensors can be alternative effective tests to be exploited globally after clinical trial execution.


2021 ◽  
Vol 11 (3) ◽  
pp. 1171
Author(s):  
Chang Xu ◽  
Zhihong Sun ◽  
Guowei Shao

Two-unit cells developed to predict the effective thermal conductivities of four-directional carbon/carbon composites with the finite element method are proposed in this paper. The smaller-size unit cell is formulated from the larger-size unit cell by two 180° rotational transformations. The temperature boundary conditions corresponding to the two-unit cells are derived, and the validity is verified by the temperature and heat flux distributions at specific positions of the larger-size unit cell and the smaller-size unit cell. The thermal conductivities of the carbon fiber bundles and carbon fiber rods are measured firstly. Then, combined with the properties of the matrix, the effective thermal conductivities of the four-directional carbon/carbon composites are numerically predicted. The results in transverse direction predicted by the larger-size unit cell and the smaller-size unit cell are both higher than experimental values, which are 5.8 to 6.2% and 7.3 to 8.2%, respectively. In longitudinal direction, the calculated thermal conductivities of the larger-size unit cell and the smaller-size unit cell are 6.8% and 6.2% higher than the experimental results, respectively. In addition, carbon fiber rods with different diameters are set to clarify the influence on the effective thermal conductivities of the four-directional carbon/carbon composites.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


Author(s):  
Yakov Gutkin ◽  
Asher Madjar ◽  
Emanuel Cohen

Abstract In this paper, we describe the design, layout, and performance of a 6-bit TTD (true time delay) chip operating over the entire band of 2–18 GHz. The 1.15 mm2 chip is implemented using TSMC foundry 65 nm technology. The least significant bit is 1 ps. The design is based on the concept of all-pass network with some modifications intended to reduce the number of unit cells. Thus, the first three bits are implemented in a single delay cell. A peaking buffer amplifier between bit 4 and bit 5 is used for impedance matching and partial compensation of the insertion loss slope. The rms delay error of the TTD is <1 ps over most of the frequency band and insertion loss is between 2.5 and 6.3 dB for all 64 states.


Sign in / Sign up

Export Citation Format

Share Document