scholarly journals Ball Tracking and Trajectory Prediction for Table-Tennis Robots

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 333 ◽  
Author(s):  
Hsien-I Lin ◽  
Zhangguo Yu ◽  
Yi-Chen Huang

Sports robots have become a popular research topic in recent years. For table-tennis robots, ball tracking and trajectory prediction are the most important technologies. Several methods were developed in previous research efforts, and they can be divided into two categories: physical models and machine learning. The former use algorithms that consider gravity, air resistance, the Magnus effect, and elastic collision. However, estimating these external forces require high sampling frequencies that can only be achieved with high-efficiency imaging equipment. This study thus employed machine learning to learn the flight trajectories of ping-pong balls, which consist of two parabolic trajectories: one beginning at the serving point and ending at the landing point on the table, and the other beginning at the landing point and ending at the striking point of the robot. We established two artificial neural networks to learn these two trajectories. We conducted a simulation experiment using 200 real-world trajectories as training data. The mean errors of the proposed dual-network method and a single-network model were 39.6 mm and 42.9 mm, respectively. The results indicate that the prediction performance of the proposed dual-network method is better than that of the single-network approach. We also used the physical model to generate 330 trajectories for training and the simulation test results show that the trained model achieved a success rate of 97% out of 30 attempts, which was higher than the success rate of 70% obtained by the physical model. A physical experiment presented a mean error and standard deviation of 36.6 mm and 18.8 mm, respectively. The results also show that even without the time stamps, the proposed method maintains its prediction performance with the additional advantages of 15% fewer parameters in the overall network and 54% shorter training time.

Author(s):  
Cheng-Chien Lai ◽  
Wei-Hsin Huang ◽  
Betty Chia-Chen Chang ◽  
Lee-Ching Hwang

Predictors for success in smoking cessation have been studied, but a prediction model capable of providing a success rate for each patient attempting to quit smoking is still lacking. The aim of this study is to develop prediction models using machine learning algorithms to predict the outcome of smoking cessation. Data was acquired from patients underwent smoking cessation program at one medical center in Northern Taiwan. A total of 4875 enrollments fulfilled our inclusion criteria. Models with artificial neural network (ANN), support vector machine (SVM), random forest (RF), logistic regression (LoR), k-nearest neighbor (KNN), classification and regression tree (CART), and naïve Bayes (NB) were trained to predict the final smoking status of the patients in a six-month period. Sensitivity, specificity, accuracy, and area under receiver operating characteristic (ROC) curve (AUC or ROC value) were used to determine the performance of the models. We adopted the ANN model which reached a slightly better performance, with a sensitivity of 0.704, a specificity of 0.567, an accuracy of 0.640, and an ROC value of 0.660 (95% confidence interval (CI): 0.617–0.702) for prediction in smoking cessation outcome. A predictive model for smoking cessation was constructed. The model could aid in providing the predicted success rate for all smokers. It also had the potential to achieve personalized and precision medicine for treatment of smoking cessation.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


Author(s):  
Shambel Ferede ◽  
Xuemei Xie ◽  
Chen Zhang ◽  
Jiang Du ◽  
Guangming Shi

Information ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 109 ◽  
Author(s):  
Iman Rahimi ◽  
Amir H. Gandomi ◽  
Panagiotis G. Asteris ◽  
Fang Chen

The novel coronavirus disease, also known as COVID-19, is a disease outbreak that was first identified in Wuhan, a Central Chinese city. In this report, a short analysis focusing on Australia, Italy, and UK is conducted. The analysis includes confirmed and recovered cases and deaths, the growth rate in Australia compared with that in Italy and UK, and the trend of the disease in different Australian regions. Mathematical approaches based on susceptible, infected, and recovered (SIR) cases and susceptible, exposed, infected, quarantined, and recovered (SEIQR) cases models are proposed to predict epidemiology in the above-mentioned countries. Since the performance of the classic forms of SIR and SEIQR depends on parameter settings, some optimization algorithms, namely Broyden–Fletcher–Goldfarb–Shanno (BFGS), conjugate gradients (CG), limited memory bound constrained BFGS (L-BFGS-B), and Nelder–Mead, are proposed to optimize the parameters and the predictive capabilities of the SIR and SEIQR models. The results of the optimized SIR and SEIQR models were compared with those of two well-known machine learning algorithms, i.e., the Prophet algorithm and logistic function. The results demonstrate the different behaviors of these algorithms in different countries as well as the better performance of the improved SIR and SEIQR models. Moreover, the Prophet algorithm was found to provide better prediction performance than the logistic function, as well as better prediction performance for Italy and UK cases than for Australian cases. Therefore, it seems that the Prophet algorithm is suitable for data with an increasing trend in the context of a pandemic. Optimization of SIR and SEIQR model parameters yielded a significant improvement in the prediction accuracy of the models. Despite the availability of several algorithms for trend predictions in this pandemic, there is no single algorithm that would be optimal for all cases.


2021 ◽  
Vol 1 (1) ◽  
pp. 24-26
Author(s):  
Jiarui Yang ◽  
Wen-Hao Li ◽  
Dingsheng Wang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tanglong Yuan ◽  
Nana Yan ◽  
Tianyi Fei ◽  
Jitan Zheng ◽  
Juan Meng ◽  
...  

AbstractEfficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.


2014 ◽  
Vol 501-504 ◽  
pp. 847-851
Author(s):  
Che Way Chang ◽  
Chen Hua Lin ◽  
Shyi Lin Lee ◽  
Ping Huang Chen ◽  
Ching Cheng Jen ◽  
...  

Ground Penetrating Radar (GPR) is a high efficiency technology to detect the cylindrical medium in the concretes material. The electromagnetic wave is incidental to double-rebar, and measures the reflection signal behaviors from energy zone. The results from the reflection signal of electromagnetic wave of the reinforcement concretes allow evaluating the radius of double-bar (1.6cm, 1cm). A physical model can effectively measure the radius of double-bar by the result of electromagnetic wave reflex behavior analysis. The results indicate that, this techology is capable of estimating the reinforcing double-bar radius to within 6%.


2018 ◽  
Vol 72 (2) ◽  
pp. 483-502
Author(s):  
Hongtao Wu ◽  
Xiubin Zhao ◽  
Chunlei Pang ◽  
Liang Zhang ◽  
Bo Feng

A priori attitude information can improve the success rate and reliability of Global Navigation Satellite System (GNSS) multi-antennae attitude determination. However, a priori attitude information is nonlinear, and integrating a priori information into the objective function rigorously will increase the complexity of an ambiguity domain search, such as the Multivariate Constrained-Least-squares Ambiguity Decorrelation Adjustment (MC-LAMBDA) method. In this paper, a new method based on attitude domain search is presented to make use of the a priori attitude angle information with high efficiency. First, the a priori information of pitch and roll is integrated into the search process to derive the analytic search step for attitude angle, and the integer candidates are determined by traversal search in the three-dimensional attitude domain. Then, the objective function is parameterised with Euler angles, and a non-iterative approximate method is utilised to simplify the iterative computation in calculating objective function values. Experimental results reveal that compared to the MC-LAMBDA method, our new method has the same success rate and reliability, but higher efficiency in making use of a priori attitude information.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6548
Author(s):  
Peng Liao ◽  
Jiyang Fu ◽  
Wenyong Ma ◽  
Yuan Cai ◽  
Yuncheng He

According to the engineering phenomenon of the galloping of ice-coated transmission lines at certain wind speeds, this paper proposes a novel type of energy harvester based on the galloping of a flexible structure. It uses the tension generated by the galloping structure to cause periodic strain on the piezoelectric cantilever beam, which is highly efficient for converting wind energy into electricity. On this basis, a physical model of fluid–structure interaction is established, and the Reynolds-averaged Navier–Stokes equation and SST K -ω turbulent model based on ANSYS Fluent are used to carry out a two-dimensional steady computational fluid dynamics (CFD) numerical simulation. First, the CFD technology under different grid densities and time steps is verified. CFD numerical simulation technology is used to simulate the physical model of the energy harvester, and the effect of wind speed on the lateral displacement and aerodynamic force of the flexible structure is analyzed. In addition, this paper also carries out a parameterized study on the influence of the harvester’s behavior, through the wind tunnel test, focusing on the voltage and electric power output efficiency. The harvester has a maximum output power of 119.7 μW/mm3 at the optimal resistance value of 200 KΩ at a wind speed of 10 m/s. The research results provide certain guidance for the design of a high-efficiency harvester with a square aerodynamic shape and a flexible bluff body.


Sign in / Sign up

Export Citation Format

Share Document