scholarly journals A Power-Efficient Sensing Approach for Pulse Wave Palpation-Based Heart Rate Measurement

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7549
Author(s):  
Gabriel Bravo ◽  
Jesús M. Silva ◽  
Salvador A. Noriega ◽  
Erwin A. Martínez ◽  
Francisco J. Enríquez ◽  
...  

Heart rate (HR) is an essential indicator of health in the human body. It measures the number of times per minute that the heart contracts or beats. An irregular heartbeat can signify a severe health condition, so monitoring heart rate periodically can help prevent heart complications. This paper presents a novel wearable sensing approach for remote HR measurement by a compact resistance-to-microcontroller interface circuit. A heartbeat’s signal can be detected by a Force Sensing Resistor (FSR) attached to the body near large arteries (such as the carotid or radial), which expand their area each time the heart expels blood to the body. Depending on how the sensor interfaces with the subject, the FSR changes its electrical resistance every time a pulse is detected. By placing the FSR in a direct interface circuit, those resistance variations can be measured directly by a microcontroller without using either analog processing stages or an analog-to-digital converter. In this kind of interface, the self-heating of the sensor is avoided, since the FSR does not require any voltage or bias current. The proposed system has a sampling rate of 50 Sa/s, and an effective resolution of 10 bits (200 mΩ), enough for obtaining well-shaped cardiac signals and heart rate estimations in real time by the microcontroller. With this approach, the implementation of wearable systems in health monitoring applications is more feasible.

Author(s):  
Musyahadah Arum Pertiwi ◽  
I Dewa Gede Hari Wisana ◽  
Triwiyanto Triwiyanto ◽  
Sasivimon Sukaphat

Heart rate and body temperature can be used to determine the vital signs of humans. Heart rate and body temperature are two important parameters used by paramedics to determine the physical health condition and mental condition of a person. Because if your heart rate or body temperature is not normal then you need to make further efforts to avoid things that are not desirable. The purpose of this study is to design a heart rate and body temperature. In this study, the heart rate is detected using a finger sensor which placed on the finger. This sensor detects the heart rate pulses through infrared absorption of blood hemoglobin, and measure the body temperature using a DS18B20 temperature sensor which is placed axially. DS18B20 sensor works by converting temperature into digital data. The measurement results will be displayed on liquid crystal display (LCD) 2 x 16 and the data will be sent to android mobile phone via Bluetooth.  After the comparision beetwen the desain and the standart, the error is 0.46% for beats per minutes (BPM) parameters and 0.31 degrees Celsius for temperature parameters.


Author(s):  
N. F. A. Jamal ◽  
K. A. Sidek

<p>This study investigates the feasibility of photoplethysmogram (PPG) signals in monitoring health condition and designing a portable health monitoring kit which is suitable for home use. The aim of this study is to ease people in monitoring their health continuously without the need to go to the hospital which can save a lot of time. The focus of this study is to find heart rate and blood pressure recording. The type of PPG sensor used in this project is a non-invasive PPG which measures the blood volume changes in any part of the body. A total of 16 subjects consisting of male and female with age range of 20 to 60 years old were involved in this research. The heart rate and blood pressure for each subject were acquired and analyzed. Based on the result, it shows that higher heart rate reading is associated with female and younger age groups. Meanwhile, for blood pressure value, male subjects tend to have higher blood pressure as compared to female subjects. However, there is no specific pattern for blood pressure in terms of the age group. In the case of HRV analysis based on Kubios software, the SDNN value is higher for male and older age subjects. Meanwhile, the RMSSD value is lower for male and older age subjects. Therefore, PPG signal has the capability to monitor the health status of an individual, which acts as an alternative biological signal for the existing health monitoring systems.</p>


Author(s):  
Das Chandan ◽  
Das Suman ◽  
Banerjee Debamalya ◽  
Samanta Amalendu ◽  
Bhattacharyya Bidyut Kumar

Background: The most essential part of manufacturing the products is grinding. Health and safety of workers are the most important issues in this unit now a days. High productivity as well as maximum turnover is the highest interest of these units. Target oriented work puts some pressure on the workers that also increase their muscular and body stresses.  Methods: The research work was done in different small-scale grinding units in West Bengal. The snap shot of 20 workers in different grinding units was obtained and evaluated with the help of rapid upper limb assessment. NIOSH’s discomfort survey method was used for mapping the different areas of pain, dissatisfactions during the operation. Heart rate and postural stresses were also noticed.  Results: This research work also shows that the poor working conditions enhance the body stresses and the discomfort level of grinders. The highest heart rate also indicates the poor health condition of grinders. Poor environmental conditions, specially noise and heat were common in grinding units.  Conclusions: It can be concluded that MSDs were present in the activities carried out in grinding units where the major number of workers were involved in bad body postures. This research work also shows that the poor working conditions enhance the body stresses and the discomfort level of grinders.


As the growth of the technology rises day to day but still we cannot able to overlook any wearable device which is the friendliest one for pregnant women. Our proposed system is a wearable device which monitors the health condition of expectant mothers’ and transmits data to the respective physician especially in rural areas. With these kind of real time wearable systems, doctors are able to provide higher quality medical services and more personalized healthcare to these women. This health monitoring system would allow a pregnant woman to interact with a physician with almost full functional capability. Preventive measure taken by continuoushealth monitoringof patient from early stages and guidance to avoid prenatal risks is the prime objective of this system. It is only applicable after 16 weeks of pregnancy. The health monitoring device constantly measures the body temperature and heartbeat of the womb and whenever there are fluctuations from the normal value it sends the information to gynecologist at remote place through GSM.The usage of these advanced technologies for pregnant women’s care facilitates optimal care to them and thereby pregnancy period mortality can be reduced substantially.


2019 ◽  
Vol 15 (2) ◽  
pp. 173-177
Author(s):  
Zulkifli Ahmad ◽  
Mohd Najeb Jamaludin ◽  
Kamaruzaman Soeed

Vital sign monitoring is an important body measurement to identify health condition and diagnose any disease and illness. In sports, physical exercise will contribute to the changes of the physiological systems, specifically for the vital signs. Therefore, the objective of this study was to determine the effect of physical fatigue exercise on the vital sign parameters. This is significant for the fitness identification and prediction of each individual when performing an exercise. Five male subjects with no history of injuries and random BMI were selected from students of biomedical engineering, Universiti Teknologi Malaysia. Based on the relationship between physical movement and physiology, the parameters considered were heart rate, blood pressure, and body temperature. Subjects were required to run on the treadmill at an initial speed of 4 km/h with an increase of 1 km/h at every 2 minutes interval. The effect of exercise was marked according to the fatigue protocol where the subject was induced to the maximum condition of performance. All parameters were measured twice, for pre and post exercise-induced protocol. The analysis of relationship of each parameter between pre and post fatigue was p<0.05. The results revealed that the heart rate and gap between blood pressure’s systolic and diastolic were greater for all categories except underweight, where the systolic blood pressure dropped to below 100mmHg at the end of exercise. Also, the body temperature was slightly declined to balance the thermoregulatory system with sweating. Hence, the vigorous physical movement could contribute to the active physiological system based on body metabolism. Heart rate and blood pressure presented significant effects from the fatiguing exercise whereas the body temperature did not indicate any distinguishable impact. The results presented might act as the basis of reference for physical exercise by monitoring the vital sign parameters.


2019 ◽  
Vol 125 ◽  
pp. 25003
Author(s):  
Mery Subito ◽  
Alamsyah ◽  
Ardi Amir

Examination of vital signs such as blood pressure, heart rate, and body temperature is the most basic essential function of the body in determining the health status of the patient. In general, examining vital signs performed by a doctor or nurse uses an electrocardiogram, thermometer, and sphygmomanometer. However, this tool has a weakness in terms of time efficiency and accuracy of reading vital sign data. The process of taking vital sign data for a long time, the limited number of medical personnel in handling patients, and increasing administrative costs certainly become a concern for management in improving health services. To overcome this problem, we proposed a design that can monitor the health condition of patients' vital signs efficiently and in real time. The system used in this study consisted of an HRM-2511E type heartbeat sensor in pulse units per minute (bpm), DS18b20 body type temperature sensor in degrees Celsius (0C), and MPX5700AP sensor in mmHg units. This research is fundamental and is useful in helping medical personnel in monitoring patients' vital sign health conditions. The results of the proposed design showed that the heart rate, temperature, and blood pressure devices worked well with respective accuracy of 97.64%, 99.51%, and 97.53%.


2018 ◽  
Vol 2 (2) ◽  
pp. 57-61
Author(s):  
Putri Karina ◽  
Ahmad Hamim Thohari

Health is a prosperous state of body, soul, and social that enables everyone to live socially and economically productive. The heart is a vital organ in the body that affects health, heartbeat is one of the parameters that paramedics use to know health. Stethoscope is a common tool used in measuring heart rate, simple and easy to carry, but has a deficiency in its use directly by experts / medical who have knowledge of Stethoscope in achieving accurate results in accuracy requires concentration in finding results and Stethoscope itself can not be used by ordinary people who do not understand. Pulse and Raspberry sensor control using MCP3008 that serves as an analog to digital converter. Thus, it is hoped to detect the heart rate increase with ease accurately and the measurement can be done by itself. This final project proposes the design of heart rate measurers in a fast and accurate way in a relatively accurate calculation of results. The workings of this tool is to retrieve data from the pulse sensor detection for heartbeat and then displayed on the monitor screen.


2019 ◽  
Vol 14 (2) ◽  
pp. 1-9
Author(s):  
Agung Gamara ◽  
Atika Hendryani

The heart is a vital organ that must always be kept healthy. Not only the heart, body temperature is also important to control the condition of the body with the environment and know the symptoms of serious illness.Heart rate and body temperature are very important parameters to determine a person's health condition. The importance of monitoring these two parameters so that we need gauges that are easy to use and carry so that they can always monitor the values of the two parameters within normal limits. The purpose of this research is to design and build an Android-based Heart Rate and Body Temperature Monitor.The methods used are literature study, tool design and interface, testing tools, and analyzing test results. Arduino Nano-based heart rate and body temperature detector uses Max 30100 sensor as a measurement of heart rate and DS18B20 sensor as body temperature sensor. The sensor readings will be processed by Arduino Nano which will be displayed on LCD 16 x 2 and Android.The test results show that the heart rate and body temperature monitoring tools function properly with an accuracy value of 99.1% for measuring heart rate and 99.4% for measuring body temperature. Suggestions as a consideration for developing this research next is to make the android display easier and have health information and what should be done by a system user related to heart rate and body temperature.


Author(s):  
A. E. Chernikova ◽  
Yu. P. Potekhina

Introduction. An osteopathic examination determines the rate, the amplitude and the strength of the main rhythms (cardiac, respiratory and cranial). However, there are relatively few studies in the available literature dedicated to the influence of osteopathic correction (OC) on the characteristics of these rhythms.Goal of research — to study the influence of OC on the rate characteristics of various rhythms of the human body.Materials and methods. 88 adult osteopathic patients aged from 18 to 81 years were examined, among them 30 men and 58 women. All patients received general osteopathic examination. The rate of the cranial rhythm (RCR), respiratory rate (RR) heart rate (HR), the mobility of the nervous processes (MNP) and the connective tissue mobility (CTM) were assessed before and after the OC session.Results. Since age varied greatly in the examined group, a correlation analysis of age-related changes of the assessed rhythms was carried out. Only the CTM correlated with age (r=–0,28; p<0,05) in a statistically significant way. The rank dispersion analysis of Kruskal–Wallis also showed statistically significant difference in this indicator in different age groups (p=0,043). With the increase of years, the CTM decreases gradually. After the OC, the CTM, increased in a statistically significant way (p<0,0001). The RCR varied from 5 to 12 cycles/min in the examined group, which corresponded to the norm. After the OC, the RCR has increased in a statistically significant way (p<0,0001), the MNP has also increased (p<0,0001). The initial heart rate in the subjects varied from 56 to 94 beats/min, and in 15 % it exceeded the norm. After the OC the heart rate corresponded to the norm in all patients. The heart rate and the respiratory rate significantly decreased after the OC (р<0,0001).Conclusion. The described biorhythm changes after the OC session may be indicative of the improvement of the nervous regulation, of the normalization of the autonomic balance, of the improvement of the biomechanical properties of body tissues and of the increase of their mobility. The assessed parameters can be measured quickly without any additional equipment and can be used in order to study the results of the OC.


Author(s):  
A.M. Satarkulova

The assessment and dynamic control over students’ status is a very important task. It allows timely detection of prenosological status prior to pathology and health maintenance in students. The objective of the paper is to assess the adaptive abilities of the body, to analyze changes in heart rate variability indicators in students with various types of autonomic regulation, to identify prenosological status and precursory pathological symptoms. Materials and Methods. The study enrolled 302 students from India, aged 21.54±1.43. Programming complex «Psychophysiologist» was used to register the main HRV parameters within 5 minutes. Health status was evaluated according to the index of functional changes and the scale of functional states. Results. N.I. Shlyk (2009) distinguished two groups of students with different types of autonomic regulation: type 1 (53 %) with moderate and type 2 (5 %) with marked characteristics of central regulation profile, type 3 (35 %) with moderate and type 4 (7 %) with marked characteristics of autonomous regulation profile. Main parameters of HRV and adaptation potential were defined for each student.All the parameters characterized functional and health status. Conclusions. It was shown that 82 % of trial subjects (type 1), 53 % (type 2), 94 % (type 3) and 95 % (type 4) demonstrated satisfactory adaptation and their physiological processes were at an optimal level. 18 % of students (type 1) demonstrated reduced adaptive abilities of the body. Moreover, they were under moderate stress. 47 % of subjects (type 2) were also under a significant stress, which was proven by excessively high SI, low SDNN and TP, and an increased index of functional changes. 5 % of students (type 4) revealed dysfunctional characteristics in the heart rhythm, peculiar to pathology. Keywords: foreign students, heart rate variability, types of autonomic regulation, adaptation potential, functional status. Оценка состояния студентов и динамический контроль за ним является важной задачей, поскольку позволяет своевременно выявлять у студентов донозологические состояния, предшествующие патологии, и способствовать сохранению здоровья. Цель. Оценка адаптивных возможностей организма, анализ изменений показателей вариабельности сердечного ритма у студентов с различными типами вегетативной регуляции, выявление донозологических состояний и ранних признаков патологии. Материалы и методы. В исследовании участвовало 302 студента в возрасте 21,54+1,43 года из Индии. Регистрировались основные параметры ВСР в течение 5 мин с использованием программно-аппаратного комплекса «Психофизиолог». Состояние и уровень здоровья оценивались по индексу функциональных изменений и шкале функциональных состояний. Результаты. По способу, предложенному Н.И. Шлык, выделены группы студентов с различными типами вегетативной регуляции: I (53 %) и II типы (5 %) – с умеренным и выраженным преобладанием центрального контура регуляции соответственно, III (35 %) и IV типы (7 %) – с умеренным и выраженным преобладанием автономного контура регуляции соответственно. У каждого из студентов определены основные параметры ВСР и адаптационного потенциала, характеризующие функциональное состояние и уровень здоровья. Выводы. Показано, что для 82 % обследуемых с I типом, 53 % со II типом, 94 % c III типом и 95 % с IV типом регуляции характерно состояние удовлетворительной адаптации, физиологические процессы сохраняются на оптимальном уровне. В группе студентов I типа у 18 % студентов адаптивные возможности организма снижены, выявлено состояние умеренного напряжения. У 47 % обследуемых II типа также зафиксировано состояние резко выраженного напряжения, индикатором которого является чрезмерно высокое значение SI, низкие величины SDNN и ТP, повышенное значение индекса функциональных изменений. В группе студентов с IV типом у 5 % учащихсяв регуляции ритма сердца выявлены дисфункциональные признаки, характерные для патологии. Ключевые слова: иностранные студенты, вариабельность сердечного ритма, типы вегетативной регуляции, адаптационный потенциал, функциональное состояние.


Sign in / Sign up

Export Citation Format

Share Document