scholarly journals Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites

Separations ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 54 ◽  
Author(s):  
Ivana Timková ◽  
Jana Sedláková-Kaduková ◽  
Peter Pristaš

Heavy metal pollution is of great concern. Due to expansion of industrial activities, a large amount of metal is released into the environment, disturbing its fragile balance. Conventional methods of remediation of heavy metal-polluted soil and water are expensive and inefficient. Therefore, new techniques are needed to provide environmentally friendly and highly selective remediation. Streptomycetes, with their unique growth characteristics, ability to form spores and mycelia, and relatively rapid colonization of substrates, act as suitable agents for bioremediation of metals and organic compounds in polluted soil and water. A variety of mechanisms could be involved in reduction of metals in the environment, e.g., sorption to exopolymers, precipitation, biosorption and bioaccumulation. Studies performed on biosorption and bioaccumulation potential of streptomycetes could be used as a basis for further development in this field. Streptomycetes are of interest because of their ability to survive in environments contaminated by metals through the production of a wide range of metal ion chelators, such as siderophores, which provide protection from the negative effects of heavy metals or specific uptake for specialized metabolic processes. Many strains also have the equally important characteristic of resistance to high concentrations of heavy metals.

2018 ◽  
Vol 14 (2) ◽  
pp. 72-84
Author(s):  
C O AKACHUKU ◽  
V P TOMBERE

The study examined the effect of polluted soil on early growth performance of Pentaclethra macro-phlylla. The objectives of the study were to determine the heavy metal content of the soil and the effect on the growth of this species. Soil samples were collected from an abandoned Sunshine battery facto-ry in Essien Udim Local Government Area of Akwa Ibom State using soil auger. The samples, collect-ed at different soil depths and at various distances, were divided into two parts. A part was analysed in the laboratory to determine the heavy metal content of the soil using digestion and atomic absorption methods, while the other part was used in raising Pentaclethra macrophyla seedlings in polypots. The result of analysis of variance of the soil samples considering the distances showed significant differ-ence in the distribution of copper and lead only (P<0.05), while no significant difference occurred among the concentrations of all the heavy metals at different soil depths. The ranges of concentration of metals in the polluted soil samples in mg/kg were Zn (13.90-41.30), Bo (11.40-27.10), Cd (61.10-77.10), Cu (5.35-49.75), Pb (53.10-153.70), As (0.40-4.50) and Se (1.80-4.30), while the control rec-orded the least amount of Pb (2.40-4.30 mg/kg). On the average, seedlings raised in soils collected from the point of waste disposal (epicentre) had the least growth values in terms of total leaf number (166), stem height (21.90cm), branch number (1.4) and branchlet number (8.8). This signifies stunted growth, which is likely due to the high concentrations of Pb and Cu. Factories should therefore be compelled to eliminate heavy metals before disposing their waste into the environment.


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1608
Author(s):  
Aslihan Esringü ◽  
Metin Turan ◽  
Asli Cangönül

Heavy metal pollution is among the important environmental problems in the world. Many techniques have already been used to remove the heavy metals such as lead (Pb) and cadmium (Cd). Among them, the phytoremediation method is an environmentally friendly and green technology. This study was carried out to determine the efficiency of fulvic acid (FA) application in removing Pb and Cd from polluted soil using Tagetes eracta L. and Zinnia elegans Jacq. ornamental plants. The results indicated that, FA application, number of flower per plants, and plant fresh weight of Tagetes eracta plants and Zinnia elegans plants increased 187.5%, 104.5% and 155.5%, 57.7%, respectively with application of 7000 mg L−1 FA at 100 mg kg−1 Pb pollution condition, whereas 42.85%, 16.5%, and 44.4–36.1% with application of 7000 mg L−1 FA at 30 mg kg±1 Cd pollution condition, respectively. With the FA application in the Zinnia elegans plant, the root part has accumulated 51.53% more Pb than the shoot part. For Cd, the shoot part accumulated 35.33% more Cd than the root. The effect of FA application on superoxide dismutase (SOD), peroxidase (POD) and, catalase (CAT) of the Tagetes eracta were decreased as 32.7%, 33.1%, and 35.1% for Pb, 21.2%, 25.1%, and 26,1%, for Cd, and 15.1%, 22.7%, and 37.7% for Pb, and 7.55%, 18.0%, and 18.8% for Cd were in Zinnia elegans respectively. In conclusion, Tagetes eracta and Zinnia elegans can not be recommended for remediation of Pb and Cd polluted area, but FA can be recommended for Pb and Cd stabilization in polluted soil.


Author(s):  
Mojtaba Arjomandi ◽  
*Hamid Shirkhanloo

Heavy metals are vital and necessary in our daily lives. Moreover, if the amounts of heavy metals are more than the acceptable amounts (mentioned by WHO) in soil, water, and air, indeed, they cause a lot of diseases in human bodies. Therefore, monitoring and measuring the amounts of heavy metals that are arduous and difficult are so important. In this review paper, a lot of studies that have been carried out on the determination and quantification of heavy metals in human bodies, soil, and water are considered. Moreover, the effect of toxicity of each heavy metal on human health is assessed. According to WHO, EPA, NIOSH, ACGIH, and clinical chemistry, the determination of heavy metals such as Cd, Pb, Zn, Hg, Cu, Mn is very important in the human body and Environmental matrixes. 


Author(s):  
Muibat Fashola

Introduction: Indiscriminate dumping of spent oils enriched with heavy metals has led to increase in heavy metals load in the soil. Heavy metals exert toxic effects on biodegradation of organic pollutant in cocontaminated soil and there is need to find suitable strategies for their removal. Aim: The aim of this study was to assess the heavy metals resistance capability of indigenous Bacillus species in hydrocarbon polluted soil to nickel (Ni), Cadmium (Cd), Lead (Pb) and Chromium (Cr). Materials and Methods: Heavy metal tolerant bacteria were isolated from hydrocarbon polluted soil using Luria-Berthani agar supplemented with the respective metals and spread plate techniques. The isolates were putatively identified on the basis of their colonial morphology and biochemical characteristics and their antibiotics susceptibility pattern were evaluated using disc diffusion method. Results: The maximum tolerable concentration (MTC) of the four heavy metals to the selected isolates was 2 mM. Four bacteria isolates able to withstand the MTC were putatively identified as Bacillus subtilis, Bacillus megaterium, Bacillus laterosporus and Bacillus polymyxa. Out of the four Bacillus species, only B. laterosporus did not show multiple tolerance to the tested antibiotics which show that there is correlation between heavy metal tolerance and antibiotics resistance by the isolates. Conclusion: Multiple heavy metal tolerance Bacillus spp. were isolated from crude oil polluted soil. These bacteria could be suitable agents for bioaugmentation of hydrocarbon polluted soil co-contaminated with heavy metals.


Author(s):  
Joan Mwihaki Nyika

Heavy metal pollution is a growing environmental concern due to the increase in anthropogenic-based sources. Microorganisms have high adsorptive capacities and surface-area-to-volume ratio that enable the uptake of these contaminants and their conversion to innocuous complexes in the process of bioremediation. This chapter explores the mechanisms and specific microorganisms that are resistant to metal toxicity. A wide range of bacterial, algae, and fungal species used as biosorbents are highlighted. Mechanisms such as reduction of metal cations, their sequestration, and binding on cell barriers are discussed. To optimise the efficacy of microorganisms in bioremediation processes, adoption of genetic and nano-technologies is recommended.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1574 ◽  
Author(s):  
Abdullah Alkhudhiri ◽  
Mohammed Hakami ◽  
Myrto-Panagiota Zacharof ◽  
Hosam Abu Homod ◽  
Ahmed Alsadun

Synthetic industrial wastewater samples containing mercury (Hg), arsenic (As), and lead (Pb) ions in various concentrations were prepared and treated by air gap membrane distillation (AGMD), a promising method for heavy metals removal. Three different membrane pore sizes (0.2, 0.45, and 1 μm) which are commercially available (TF200, TF450, and TF1000) were tested to assess their effectiveness in combination with various heavy metal concentrations and operating parameters (flow rate 1–5 L/min, feed temperature 40–70 °C, and pH 2–11). The results indicated that a high removal efficiency of the heavy metals was achieved by AGMD. TF200 and TF450 showed excellent membrane removal efficiency, which was above 96% for heavy metal ions in a wide range of concentrations. In addition, there was no significant influence of the pH value on the metal removal efficiency. Energy consumption was monitored at different membrane pore sizes and was found to be almost independent of membrane pore size and metal type.


2020 ◽  
Vol 8 (12) ◽  
pp. 2033
Author(s):  
Chadlia Hachani ◽  
Mohammed S. Lamhamedi ◽  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Abdenbi Zine El Abidine ◽  
...  

The pollution of soils by heavy metals resulting from mining activities is one of the major environmental problems in North Africa. Mycorrhizoremediation using mycorrhizal fungi and adapted plant species is emerging as one of the most innovative methods to remediate heavy metal pollution. This study aims to assess the growth and the nutritional status of ectomycorrhizal Pinus halepensis seedlings subjected to high concentrations of Pb, Zn, and Cd for possible integration in the restoration of heavy metals contaminated sites. Ectomycorrhizal and non-ectomycorrhizal P. halepensis seedlings were grown in uncontaminated (control) and contaminated soils for 12 months. Growth, mineral nutrition, and heavy metal content were assessed. Results showed that ectomycorrhizae significantly improved shoot and roots dry masses of P. halepensis seedlings, as well as nitrogen shoot content. The absorption of Pb, Zn, and Cd was much higher in the roots than in the shoots, and significantly more pronounced in ectomycorrhizal seedlings—especially for Zn and Cd. The presence of ectomycorrhizae significantly reduced the translocation factor of Zn and Cd and bioaccumulation factor of Pb and Cd, which enhanced the phytostabilizing potential of P. halepensis seedlings. These results support the use of ectomycorrhizal P. halepensis in the remediation of heavy metal contaminated sites.


2019 ◽  
Vol 7 (12) ◽  
pp. 697 ◽  
Author(s):  
Chaolin Fang ◽  
Varenyam Achal

The global energy crisis and heavy metal pollution are the common problems of the world. It is noted that the microbial fuel cell (MFC) has been developed as a promising technique for sustainable energy production and simultaneously coupled with the remediation of heavy metals from water and soil. This paper reviewed the performances of MFCs for heavy metal removal from soil and water. Electrochemical and microbial biocatalytic reactions synergistically resulted in power generation and the high removal efficiencies of several heavy metals in wastewater, such as copper, hexavalent chromium, mercury, silver, thallium. The coupling system of MFCs and microbial electrolysis cells (MECs) successfully reduced cadmium and lead without external energy input. Moreover, the effects of pH and electrode materials on the MFCs in water were discussed. In addition, the remediation of heavy metal-contaminated soil by MFCs were summarized, noting that plant-MFC performed very well in the heavy metal removal.


Sign in / Sign up

Export Citation Format

Share Document