scholarly journals Chromatographic Analysis of Aflatoxigenic Aspergillus flavus Isolated from Malaysian Sweet Corn

Separations ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 98
Author(s):  
Rahim Khan ◽  
Farinazleen Mohamad Ghazali ◽  
Nor Ainy Mahyudin ◽  
Nik Iskandar Putra Samsudin

High-performance liquid chromatography (HPLC) provides a quick and efficient tool for accurately characterizing aflatoxigenic and non-aflatoxigenic isolates of Aspergillus flavus. This method also provides a quantitative analysis of AFs in Aspergillus flavus. The method’s recovery was assessed by spiking a mixture of AF at different concentrations to the testing medium. The validity of the method was confirmed using aflatoxigenic and non-aflatoxigenic strains of A. flavus. The HPLC system, coupled with a fluorescence detector and post-column photochemical reactor, showed high sensitivity in detecting spiked AFs or AFs produced by A. flavus isolates. Recovery from medium spiked with 10, 20, 60, and 80 ppb of AFs was found to be 73–86% using this approach. For AFB1 and AFB2, the limit of detection was 0.072 and 0.062 ppb, while the limit of quantification was 0.220 and 0.189 ppb, respectively. The AFB1 concentrations ranged from 0.09 to 50.68 ppb, while the AFB2 concentrations ranged between 0.33 and 9.23 ppb. The findings showed that six isolates produced more AFB1 and AFB2 than the acceptable limit of 5 ppb. The incidence of aflatoxigenic isolates of A. flavus in sweet corn and higher concentrations of AFB1 and AFB2 emphasize the need for field trials to explore their real potential for AF production in corn.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Madasamy Kottiappan ◽  
Shanmugaselvan Veilumuthu Anandhan ◽  
Selvaganapathi Chandran

A simple, reliable, and sensitive method was based on high-performance liquid chromatography (HPLC) was developed and validated for the estimation of abamectin residues present in tea. The abamectin residues extracted with acetone-water mixture (70 : 30, v/v) and derivatised with 1-methylimidazole (1-MIM) and trifluoroacetic anhydride (TFAA) were estimated by HPLC using fluorescence detector (FLD). The technique was validated in terms of linearity, precision, recovery, specificity, limit of detection (LOD), and limit of quantification (LOQ). A good linear relationship () was absorbed in the abamectin concentration range from 0.01 to 1.0 μg mL−1. The limit of detection and limit of quantification of the method were 0.01 and 0.02 μg g−1, respectively. The average recoveries of the pesticide from black tea and dried green leaves ranged from 83.3 to 103.8% and 83.8 to 98.0%, respectively.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


Author(s):  
Kamran Ashraf ◽  
Syed Adnan Ali Shah ◽  
Mohd Mujeeb

<p><strong>Objective: </strong>A simple, sensitive, precise, and accurate stability indicating HPTLC (high-performance thin-layer chromatography) method for analysis of 10-gingerol in ginger has been developed and validated as perICH guidelines.</p><p><strong>Methods: </strong>The separation was achieved on TLC (thin layer chromatography) aluminum plates pre-coated with silica gel 60F<sub>254</sub> using n-hexane: ethyl acetate 55:45 (%, v/v) as a mobile phase. Densitometric analysis was performed at 569 nm.</p><p><strong>Results: </strong>This system was found to have a compact spot of 10-gingerol at <em>R</em><sub>F</sub> value of 0.57±0.03. For the proposed procedure, linearity (<em>r</em><sup>2</sup> = 0.998±0.02), limit of detection (18ng/spot), limit of quantification (42 ng/spot), recovery (ranging from 98.35%–100.68%), were found to be satisfactory.</p><p><strong>Conclusion: </strong>Statistical analysis reveals that the content of 10-gingerol in different geographical region varied significantly. The highest and lowest concentration of 10-gingerol in ginger was found to be present in a sample of Patna, Lucknow and Surat respectively which inferred that the variety of ginger found in Patna, Lucknow are much superior to other regions of India.</p>


2021 ◽  
Author(s):  
Feng Gao ◽  
Xiaolong Tu ◽  
Yongfang Yu ◽  
Yansha Gao ◽  
Jin Zou ◽  
...  

Abstract Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. Core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1 µM to 300.0 µM, and a low limit of detection (LOD) of 0.033 µM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45-104.80%.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 32-37
Author(s):  
Vijaya Lakshmi Marella ◽  
Chaitanya S. N ◽  

A selective and sensitive reverse phase High Performance Liquid Chromatographic method has been developed and validated for the estimation of lornoxicam in bulk, pharmaceutical dosage forms and in dissolution samples. The analysis was performed isocratically on an Inertsil column (250* 4.6 mm, 5 µm) using a mass spectrometric compatible mobile phase of 10 mM ammonium acetate: acetonitrile (50:50 V/V) at a flow rate of 1 mL/min.The detection wavelength was 290 nm. The retention time was found to be 4.573 min for lornoxicam. The linearity of the method has been satisfied with Beer Lambert’s law in the concentration range of 5-25 µg/mL with a correlation coefficient of 0.9988. The mean recoveries assessed for lornoxicam were in the range of 100.39-101.86 %, indicating good accuracy of the method. The limit of detection and limit of quantification were found to be 0.03 and 0.11 µg/mL, respectively. The developed method has been statistically validated in accordance with ICH guidelines and found to be mass spectrometric compatible, simple, precise, and accurate with the prescribed values. Thus, the proposed method was successfully applied for the estimation of lornoxicam in routine quality control analysis of bulk, formulations and in dissolution samples.


Author(s):  
Bhupender Tomar ◽  
Ankita Sharma ◽  
Inder Kumar ◽  
Sandeep Jain ◽  
Pallavi Ahirrao

A simple, precise, and accurate reverse phase high performance liquid chromatographic method (RP-HPLC) was developed and validated for the estimation of the combination of 5- Fluorouracil (5-FU) and Imiquimod in active pharmaceutical ingredients (APIs). The method was carried out on Phenomenex C18 (250 × 4.6mm I.D., 5𝜇m) using isocratic elution mode. The mobile phase was used as Acetonitrile: 10mM potassium dihydrogen orthophosphate: triethylamine (40:59.9:0.1, v/v, pH 4.5 with orthophosphoric acid) and Water: ACN (50:50 v/v) was used as a diluent. The concentration of solvents was 1-20µg/ml and the volume of injection was 20µl with the flow rate of 1.2ml/min. The retention times for 5-FU and Imiquimod were found to be 1.9±0.5 and 6.6±0.5 min respectively. The absorption maxima of 5FU and Imiquimod were found 267nm and 227nm respectively. The method was validated as per ICH guidelines. All the data were found within the specified limits. The limit of detection (LOD) and limit of quantification (LOQ) of 5- Fluorouracil were found to be 0.015μg/mL and 0.048 μg/mL, respectively, and Imiquimod was found to be 0.078μg/mL and 0.237μg/mL, respectively. The method developed in the present study was found to be sensitive, specific, and precise and can be applied for the simultaneous estimation of 5-FU and Imiquimod.


2021 ◽  
pp. 1-11
Author(s):  
Sultan M. Alshahrani ◽  
John Mark Christensen

This study was designed to develop and validate a simple and efficient high performance liquid chromatography (HPLC) method to determine flunixin concentrations in Asian elephant’s (Elephas maximus) plasma. Flunixin was administered orally at a dose of 0.8 mg/kg, and blood samples were collected. Flunixin extraction was performed by adding an equal amount of acetonitrile to plasma and centrifuging at 4500 rpm for 25 minutes. The supernatant was removed, and flunixin was analyzed using HPLC-UV detection. Two methods were developed and tested utilizing two different mobile phases either with or without adding methanol (ACN: H2O vs. ACN: H2O: MeOH). Both methods showed excellent linearity and reproducibility. The limit of detection was 0.05 ug/ml and limit of quantification was 0.1 ug/ml. the efficiency of flunixin recovery was maximized by the addition of methanol to mobile phase (ACN: H2O: MeOH as 50:30:20) at 95% in comparison to 23% without methanol. In conclusion, adding methanol to HPLC methods for extraction of flunixin from elephants’ plasma yielded higher recovery rate than without methanol.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (05) ◽  
pp. 48-52
Author(s):  
A Lodhi ◽  
◽  
A Jain ◽  
B. Biswal

A validated high performance liquid chromatographic method was developed for the determination of chromium picolinate in pharmaceutical dosage forms. The analysis was performed at room temperature using a reversed-phase ODS, 5µm (250×4.6) mm column. The mobile phase consisted of acetonitrile: buffer (60:40 V/V) at a flow rate of 0.5 mL/min. The PDA-detector was set at 264 nm. The developed method showed a good linear relationship in the concentration range from 1.5 – 12.5 µg/mL with a correlation coefficient from 0.999. The limit of detection and limit of quantification were 0.0540513 and 0.1637919 µg/mL respectively.


Author(s):  
Murat Soyseven ◽  
Rüstem Keçili ◽  
Hassan Y Aboul-Enein ◽  
Göksel Arli

Abstract A novel analytical method, based on high-performance liquid chromatography with a UV (HPLC-UV) detection system for the sensitive detection of a genotoxic impurity (GTI) 5-amino-2-chloropyridine (5A2Cl) in a model active pharmaceutical ingredient (API) tenoxicam (TNX), has been developed and validated. The HPLC-UV method was used for the determination of GTI 5A2Cl in API TNX. The compounds were separated using a mobile phase composed of water (pH 3 adjusted with orthophosphoric acid): MeOH, (50:50: v/v) on a C18 column (150 × 4.6 mm i.d., 2.7 μm) at a flow rate of 0.7 mL min−1. Detection was carried out in the 254 nm wavelength. Column temperature was maintained at 40°C during the analyses and 10 μL volume was injected into the HPLC-UV system. The method was validated in the range of 1–40 μg mL−1. The obtained calibration curves for the GTI compound was found linear with equation, y = 40766x − 1125,6 (R2 = 0.999). The developed analytical method toward the target compounds was accurate, and the achieved limit of detection and limit of quantification values for the target compound 5A2Cl were 0.015 and 0.048 μg mL−1, respectively. The recovery values were calculated and found to be between 98.80 and 100.03%. The developed RP-HPLC-UV analytical method in this research is accurate, precise, rapid, simple and appropriate for the sensitive analysis of target GTI 5A2Cl in model API TNX.


Sign in / Sign up

Export Citation Format

Share Document