scholarly journals Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model

2018 ◽  
Vol 10 (10) ◽  
pp. 3820 ◽  
Author(s):  
Ileana Iocola ◽  
Gabriele Campanelli ◽  
Mariangela Diacono ◽  
Fabrizio Leteo ◽  
Francesco Montemurro ◽  
...  

Organic agriculture is perceived as environmentally sustainable, but, under its umbrella, different production systems exist ranging from simplified organic productions to well diversified systems with a full implementation of agro-ecological approaches. Among several developed tools for agriculture sustainability assessment, multi-criteria models are increasingly gaining importance. In this study, we evaluated the use of the multi-criteria DEXi-BIOrt tool, coupled with data from long-term experiments, for the sustainability assessment of different organic vegetable production scenarios. These scenarios were applied in two Italian areas: the Adriatic coast of Marche Region and the Metaponto plan of Basilicata Region. Despite the presence of some critical issues, DEXI-BIOrt proved to be a valid tool for the sustainability evaluation of organic vegetable productions. In both areas, the most sustainable scenarios resulted the well diversified organic systems characterized by proper rotations, inclusion of agro-ecological service crops, cultivation of local and different cultivars, and presence of short supply chain mechanisms. Conversely, the implementation of the simplified organic substitution scenarios does not guarantee a suitable level of sustainability. The findings of this study could support decision makers in the implementation of appropriate measures for enhancing organic production sustainability in the framework of post-2020 Common Agricultural Policy.

HortScience ◽  
1990 ◽  
Vol 25 (2) ◽  
pp. 170a-170
Author(s):  
Victor A. Wegrzyn

Sustainable production systems are characterized as systems that can be physically and biologically maintained in perpetuity, can avoid adverse environmental and health problems, and can be economically profitable. Organic vegetable production systems are one example of sustainable farming enterprises. In California, organic production and postharvest handling techniques are closely defined by legislation. Of the several grower groups representing organic farmers in the state, the California Certified Organic Farmers is the largest, representing 382 growers that farmed a total area of 10,375 ha in 1988. Of these, 200 growers are vegetable producers. Another organization active among organic growers in California, as well as Mexico, Central American countries, and the Caribbean, is the Organic Crop Improvement Association. Marketing organizations such as the Nutri-Clean Program, which tests produce for pesticide residues and certifies specific residue standards, and the Organic Market News and Information Service facilitate the sale of organic produce in California. Cultural practice information for organic vegetable production is difficult to find, particularly techniques that would allow a grower to switch from conventional to organic production. University researchers and extension workers have so far been of little help, although the Univ. of California Sustainability Program at Davis is beginning research and education activities. Funding for these activities is inadequate, and the program is understaffed. There is need for long-term, interdisciplinary, on-farm studies to study organic production techniques in a realistic setting. At present, the reward system in place in land-grant institutions offers little encouragement to researchers to engage in this kind of work. There are formidable obstacles to increasing the use of organic materials for crop fertilization. The nutrient content of the state's manure and organic waste supplies is probably insufficient to meet the fertility needs of California's crops. In addition, since the majority of land currently producing vegetable crops in California is leased, long-term soil fertility investments are a risky undertaking.


2021 ◽  
Vol 13 (12) ◽  
pp. 35
Author(s):  
Leopold M. Nyochembeng

Organic vegetable production is a rapidly expanding segment within the fast growing organic sector of agricultural production. Although pests and diseases remain a challenge in organic production, the growth and expansion of this system is dependent on sustained use of good quality organic seed. Due to the limited supply of organic seed, the National Organic Program (NOP) allows the use of untreated conventional seed in organic production of vegetables and other crops. Conventional seed derives from a high input production system using synthetic pesticides and fertilizers. They also offer many varieties and are readily available at a much lower price compared to organic seed. Organic systems demand cultivars with different characteristics often absent in conventional cultivars, and this need begins with the seed. It is not common practice for farmers to test or sanitize seed before planting. Consequently, the use of such conventional seeds, which may not be well adapted to the low input organic production system, could favor disease susceptibility, establishment of seedborne pathogens especially in vegetables and their subsequent dissemination in the organic production system. Our overall goal is to improve organic vegetable crop health and production in the southeastern U.S. through application of sustainable seed health management and help limit seed borne infections, transmission and dissemination in organic vegetable production fields.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 508A-508
Author(s):  
A. Galadima ◽  
C.A. Sanchez ◽  
J. Palumbo ◽  
B. Tickes ◽  
M. Matheron ◽  
...  

Experiments were conducted during 1998–99 seasons to evaluate the potential for organic vegetable production in the low desert of the southwestern United States. The experimental design included three summer management options [fallow, cowpea (Vigna sinensis), and sudangrass (Sorghum vulgare)] in factorial combination with alternative production systems, which included organic and conventional systems. The crops cultivated were iceberg lettuce (Lactuca sativa L) during the fall–winter period and melons (Cucumis melo Reticulatus Group) during the spring. The organic plots were managed with strict adherence to California Certified Organic Farmers (CCOF) guidelines. Summer cover crop management seemed to influence the early growth and N uptake of lettuce, but had no final effect on yield and quality. The organic production system resulted in lower yields and inferior product quality compared to the conventional system. Generally, disease and weeds were not limiting factors, although labor costs for weed control would be slightly higher in organic plots. Insects, primarily aphids (various types) and thrips (Frankliniella Occidentalis Perancle), and fertility, primarily N, were factors limiting yield and quality in organic systems. Control of whiteflies (Bemisia argentifoli) was the limiting factor for melons. Studies during 1999–2000 are focused on overcoming the challenges of the insect and fertility management in organic systems.


2016 ◽  
Vol 5 (4) ◽  
pp. 46 ◽  
Author(s):  
Mona Ahmadiani ◽  
Chun Li ◽  
Yaqin Liu ◽  
Esendugue Greg Fonsah ◽  
Christine Bliss ◽  
...  

<p class="sar-body"><span lang="EN-US">There are little economic data concerning the profitability of organic vegetable crops in the Southern Coastal Plain, especially in reference to sod-based rotation and tillage alternatives.  A three-year experiment was conducted at the North Florida Research and Education Center-Quincy involving a crop rotation sequence of oats and rye (winter), bush beans (spring), soybean (summer) and broccoli (fall). Bush beans and broccoli were the cash crops. This paper presents analyses of the riskiness of organic production utilizing years in bahiagrass prior to initiating the crop rotation sequence and conventional tillage (CT) versus strip tillage (ST). Methods of “Risk-rated enterprise budget” and “Analyses of Variance-Covariance Matrix (ANOVA)” were utilized for determining relative profitability, and coefficient of variation was applied for measuring riskiness of each treatment. Three years of bahiagrass prior to initiating the crop rotation sequence, in combination with conventional tillage, had the highest profitability and ranked as the least risky scenario.  The second most profitable treatment was conventional tillage with four years of bahiagrass. Focusing on strip tillage, four years of bahiagrass with strip-tillage ranked third in term of profitability.</span></p>


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


2016 ◽  
Vol 108 (3) ◽  
pp. 1142-1154 ◽  
Author(s):  
Craig G. Cogger ◽  
Andy I. Bary ◽  
Elizabeth A. Myhre ◽  
Ann-Marie Fortuna ◽  
Doug P. Collins

2006 ◽  
Vol 20 (3) ◽  
pp. 646-650 ◽  
Author(s):  
Nathan S. Boyd ◽  
Eric B. Brennan

Weed management is often difficult and expensive in organic production systems. Clove oil is an essential oil that functions as a contact herbicide and may provide an additional weed management tool for use on organic farms. Burning nettle, purslane, and rye responses to 5, 10, 20, 40, and 80% v/v clove oil mixture applied in spray volumes of 281 and 468 L/ha were examined. Log-logistic curves were fitted to the nettle and purslane data to determine the herbicide dose required to reduce plant dry weight 50% (GR50) and 90% (GR90). A three-parameter Gaussian curve was fitted to the rye data. The GR50 and GR90 were largely unaffected by spray volume. Nettle dry weight was reduced by 90% with 12 to 61 L clove oil/ha, whereas 21 to 38 L clove oil/ha were required to reduce purslane biomass to the same level. Rye was not effectively controlled by clove oil. Clove oil controls broadleaf weeds at high concentrations, but its cost makes broadcast applications prohibitive, even in high-value vegetable production systems.


2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
P. Dremák ◽  
Á. Csihon ◽  
I. Gonda

Success of apple production is highly influenced by the applied production system and the planted cultivar. In this paper growing characteristics of 39 apple cultivars were studied in integrated and organic production systems. These kind of parameters are less studied in the cultivar and training system examinations, although they have huge effect on the training and maintaining of canopy, on the pruning necessity, ultimately on the production costs. According to our results the thickness of the central axis of apple trees showed significant differences between the integrated and the organic systems. Axis of the trees with lower trunk thickness tapers more slightly in the integrated production system, than in the case of the trees with thicker trunk in the organic system. Thicker axis is not accompanied by thicker trunk, namely the thickness of the central leader starts to decrease stronger in the organic production system, compared to the integrated one.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Anita L. Molijon ◽  
Juana M. De La Rama

“Gulayan sa Paaralan” (Vegetable Gardens) is one of the strategies of the National Greening Program of the government implemented to help promote food security. This study was undertaken to determine its status five years after its implementation. Descriptive research design was used. The 242 samples were randomly selected from the list of schools implementing Gulayan sa Paaralan from the Department of Agriculture-Regional Field Unit in Region X. A survey was done in 16 elementary and six high schools of Cagayan de Oro City, Philippines. About 77% of the schools maintained vegetable gardens to serve as food basket or main source of vegetables to sustain supplementary feeding. Also, 77% of the schools surveyed used organic vegetable production. The schools taught agriculture in their Edukasyong Pantahanan at Pangkabuhayan (EPP) in the elementary schools and also in the Technology Livelihood Education (TLE) classes in the high schools. About 87% of the 220 pupils and students interviewed said that Gulayan sa Paaralan through vegetable gardening helped the school and their families economically. It is concluded that schools are still vibrant in the implementation of the program. Through the program, the pupils learned to love and appreciate the field of agriculture. Keywords - Educational Planning and Management, Gulayan sa Paaralan, organic production, vegetable gardening, love of agriculture, descriptive design, Cagayan de Oro City, Philippines


Author(s):  
Matthew A Carr ◽  
Kate A Congreves

The demand for certified organic garlic (Allium sativum) in Canada is increasing; however, garlic can be challenging to produce organically, as it does not compete well with weeds, requires relatively fertile soils, and is grown in a biennial cropping system. Synthetic mulches have been adopted in organic production as they can be an economical method to improve vegetable production by reducing weed pressure and modifying soil conditions. We hypothesize that garlic quality and overall yield will be improved when using synthetic mulches. In 2017-18, we conducted a randomized complete block design experiment to compare garlic production of black plastic, white plastic, and Kraft paper mulch treatments to a control with no mulch at a certified organic farm in Krestova, British Columbia. We evaluated garlic characteristics associated with yield and quality, changes in soil nutrition, and weed control of the mulch treatments. We found that plastic mulches had the best weed control, and all synthetic mulches increased minimum and maximum bulb diameter, clove count, and yield compared to the control. Mulching materials did not influence soil nitrate concentrations. The results support the hypothesis that synthetic mulches increase the quality and yield of the garlic compared to the control. Our findings suggest that synthetic mulching may be a key component of improving garlic production systems.


Sign in / Sign up

Export Citation Format

Share Document